Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 19:9:54.
doi: 10.1186/s13099-017-0203-z. eCollection 2017.

Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens

Affiliations

Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens

Marta Dec et al. Gut Pathog. .

Abstract

Background: The aim of this study was to determine the susceptibility of 88 Lactobacillus isolates derived from chickens to antibiotic substances and to detect drug-resistance genes.

Results: The minimal inhibitory concentration of 13 antimicrobial substances was determined by the broth microdilution method, and resistance genes were detected by PCR. We recorded a high prevalence of resistance to tiamulin (90% resistant isolates), tetracyclines (74%) and lincomycin (70%), and a moderately high frequency of resistance to enrofloxacin (48%), macrolides (42%), aminoglycosides (12.5-31%), ampicillin (26%) and chloramphenicol (23%). Multi-drug resistance was observed in 79.5% of isolates. The presence of resistance genes was generally correlated with phenotypic resistance, but some molecular determinants were also recorded in susceptible isolates. Among tetracycline resistance genes, the most frequently identified was tetW (45% isolates), followed by tetM (26%) and tetL (24%). The ermB, ermC and lnuA genes, associated with resistance to macrolides and lincosamides, were observed in 39, 12 and 39% of isolates, respectively. Among genes determining resistance to aminoglycoside antibiotics, we identified ant(6)-Ia (10% of isolates), aac(6')-Ie-aph(2')-Ia (8%), aph(2)-Ic (6%) and aadE (4.5%). The cat gene was present in 32 isolates, including 8 of 20 found to be resistant to chloramphenicol. Two genes encoding efflux pumps were identified-the acrA gene was present in all isolates tested, and 10 of 79 lactobacilli determined to be phenotypically resistant to tiamulin contained the lsaE gene. We were unable to explain the resistance mechanism of Lactobacillus isolates to ampicillin, but showed that it did not involve the production of β-lactamases.

Conclusions: Our findings indicate that intestinal lactobacilli should be considered a reservoir of resistance genes and that antibiotics must be used prudently in poultry production. The data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorization of susceptible and resistant strains within the genus Lactobacillus.

Keywords: Antibiotic susceptibility; Lactobacillus; Poultry; Resistance genes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Lebeer S, Vanderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72:728–764. doi: 10.1128/MMBR.00017-08. - DOI - PMC - PubMed
    1. Schjørring S, Krogfelt KA. Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol. 2011;2011:1–10. doi: 10.1155/2011/312956. - DOI - PMC - PubMed
    1. Cauwerts K, Pasmans F, Devriese LA, Haesebrouck F, Decostere A. Cloacal Lactobacillus isolates from broilers often display resistance toward tetracycline antibiotics. Microb Drug Resist. 2006;12:284–288. doi: 10.1089/mdr.2006.12.284. - DOI - PubMed
    1. Cauwerts K, Pasmans F, Devriese LA, Martel A, Haesebrouck F, Decostere A. Cloacal Lactobacillus isolates from broilers show high prevalence of resistance towards macrolide and lincosamide antibiotics. Avian Pathol. 2006;35:160–164. doi: 10.1080/03079450600598137. - DOI - PubMed
    1. Saif YM. Aly M. Fadly AM, John R. Glisson JR, Larry R. McDougald LR, Nolan L K, Swayne DE, editors. Diseases of poultry. 12th edition. Iowa State, USA: Blackwell Publishing; 2008. p. 752, 771, 821, 875, 896, 934.

LinkOut - more resources