Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 17:7:33.
doi: 10.1186/s13601-017-0169-4. eCollection 2017.

Peak nasal inspiratory flow as outcome for provocation studies in allergen exposure chambers: a GA2LEN study

Affiliations

Peak nasal inspiratory flow as outcome for provocation studies in allergen exposure chambers: a GA2LEN study

Georg Boelke et al. Clin Transl Allergy. .

Abstract

Background: The GA2LEN chamber has been developed as a novel mobile allergen exposure chamber (AEC) allowing standardized multicenter trials in allergy. Hitherto, subjective nasal symptom scores have been the most often used outcome parameter, but in standardized modern trials objective parameters are preferred. Despite its practicability, the objective parameter peak nasal inspiratory flow (PNIF) has been rarely used for allergy trials in the setting of allergen exposure chambers. This study aims to evaluate PNIF as an outcome parameter for provocation studies in AECs.

Methods: In a randomized controlled blinded setting subjects suffering from allergic rhinitis were exposed to grass pollen, birch pollen, house dust mite and/or placebo in the GA2LEN chamber. Different allergen concentrations were used to evaluate symptom severities. Patients had to perform PNIF before and every 30 min during a challenge using a portable PNIF meter.

Results: 86 subjects participated in 203 challenges, altogether. House dust mite provocations caused the greatest reduction in PNIF values, followed by grass pollen and birch pollen. Provocations with every allergen or pollen concentration led to a significant decrease (p < 0.05) in PNIF compared to baseline. Furthermore, positive correlations were obtained between PNIF and peak expiratory flow, height and weight, and inverse correlations between PNIF and total nasal symptom score, nasal congestion score and visual analog scale of overall subjective symptoms.

Conclusion: PNIF is a helpful and feasible tool for conducting provocation trials with allergens, especially grass pollen and house dust mite, in an AEC.

Keywords: Allergen exposure chamber (AEC); Allergy trial; GA2LEN chamber; Peak nasal inspiratory flow (PNIF); Provocation study.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Reduction of PNIF during exposure with grass pollen in the GA2LEN chamber. PNIF development during exposure with Phleum pratense. A hash marks a reduction compared to baseline p < 0.001, a dagger a reduction compared to baseline p < 0.01. Outliers are presented as degree sign, extreme outliers as asterisk. PNIF% from both actively exposed groups (4000 and 8000 grains/m3) is significantly lower (p < 0.05) than in the placebo group at every associated time of measurement. PNIF% is displayed as medians and boxplots
Fig. 2
Fig. 2
Reduction of PNIF during exposure with birch pollen in the GA2LEN chamber. PNIF development during exposure with Betula pendula. A hash marks a reduction compared to baseline p < 0.001, a dagger a reduction compared to baseline p < 0.01 and a double dagger a reduction compared to baseline p < 0.05. Outliers are presented as degree sign, extreme outliers as asterisk. PNIF% is displayed as medians and boxplots
Fig. 3
Fig. 3
Reduction of PNIF during exposure with house dust mite (Der p 1) in the GA2LEN chamber. PNIF development during exposure with house dust mite material. A hash marks a reduction compared to baseline p < 0.001, a dagger a reduction compared to baseline p < 0.01. Outliers are presented as degree sign. PNIF% from the actively exposed group (250 µg/m3) is significantly lower (p < 0.05) than in the placebo group at every associated time of measurement. PNIF% is displayed as medians and boxplots
Fig. 4
Fig. 4
Correlations between peak nasal inspiratory flow (PNIF) and oral peak expiratory flow (PEF) (a), height (b), and weight (c) with n = 86, and relative peak nasal inspiratory flow compared to baseline (PNIF%) and mean VAS change from baseline (d), mean Total Nasal Symptom Score (TNSS) (e), and mean nasal congestion score (f) with n = 203

Similar articles

Cited by

References

    1. Pefura-Yone EW, Kengne AP, Balkissou AD, Boulleys-Nana JR, Efe-de-Melingui NR, Ndjeutcheu-Moualeu PI, Mbele-Onana CL, Kenmegne-Noumsi EC, Kolontchang-Yomi BL, Theubo-Kamgang BJ, et al. Prevalence of asthma and allergic rhinitis among adults in Yaounde, Cameroon. PLoS ONE. 2015;10:e0123099. doi: 10.1371/journal.pone.0123099. - DOI - PMC - PubMed
    1. Pols DH, Wartna JB, Moed H, van Alphen EI, Bohnen AM, Bindels PJ. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand J Prim Health Care. 2016;34:143–150. doi: 10.3109/02813432.2016.1160629. - DOI - PMC - PubMed
    1. Bauchau V, Durham SR. Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur Respir J. 2004;24:758–764. doi: 10.1183/09031936.04.00013904. - DOI - PubMed
    1. Salo PM, Arbes SJ, Jaramillo R, Calatroni A, Weir CH, Sever ML, Hoppin JA, Rose KM, Liu AH, Gergen PJ, et al. Prevalence of allergic sensitization in the United States: results from the National Health and Nutrition Examination Survey (NHANES) 2005–2006. J Allergy Clin Immunol. 2014;134:350–359. doi: 10.1016/j.jaci.2013.12.1071. - DOI - PMC - PubMed
    1. Bergmann KC, Heinrich J, Niemann H. Current status of allergy prevalence in Germany: Position paper of the Environmental Medicine Commission of the Robert Koch Institute. Allergo J Int. 2016;25:6–10. doi: 10.1007/s40629-016-0092-6. - DOI - PMC - PubMed