Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep 21;6(1):33.
doi: 10.1186/s40169-017-0165-2.

Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants

Affiliations
Review

Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants

Murray M Bern. Clin Transl Med. .

Abstract

Extracellular vesicles (EV) are blebs of cellular membranes, which entrap small portions of subjacent cytosol. They are released from a variety of cells, circulate in the blood for an unknown length of time and come to rest on endothelial surfaces. They contribute to an array of physiologic pathways, the complexity of which is still being investigated. They contribute to metastatic malignant cell implants and tumor-related angiogenesis, possibly abetted by the tissue factor that they carry. It is thought that the adherence of the EV to endothelium is dependent upon a combination of their P-selectin glycoprotein ligand-1 and exposed phosphatidylserine, the latter of which is normally hidden on the inner bilayer of the intact cellular membrane. This manuscript reviews what is known about EV origins, their clearance from the circulation and how they contribute to malignant cell implants upon endothelium surfaces and subsequent tumor growth.

Keywords: Endothelium; Exosomes; Extracellular vesicles; Hypercoagulation; Metastatic carcinoma; Microparticles; P-selectin; P-selectin glycoprotein ligand 1; Tissue factor.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The normal cell membrane is an asymmetrical bilayered structure with phosphatidylserine- and phosphatidyl-ethanolamine-enriched cytosolic layers, maintained by flippase, floppase and scramblase. As extracellular vesicles are formed, the flippases is inactivated while floppase and scramblase are activated, leading to reversal of the normal asymmetry, creating an outward facing phosphatidylserine enriched layer
Fig. 2
Fig. 2
Extracellular vesicle attachment to endothelial cells is dependent upon their exposed PSGL-1 attaching to the P-selectin expressed from Weibel–Palade bodies and platelet alpha-granules, and upon the tethering of the exposed surface phosphatidylserine to Tim4, lactadherin/MFG-E8 and probably other cell adhesion molecules

Similar articles

Cited by

References

    1. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. doi: 10.3402/jev.v3.26913. - DOI - PMC - PubMed
    1. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;10(73):1907–1920. doi: 10.1016/j.jprot.2010.06.006. - DOI - PubMed
    1. Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res. 2015;14:2367–2384. doi: 10.1021/pr501279t. - DOI - PubMed
    1. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820:940–948. doi: 10.1016/j.bbagen.2012.03.017. - DOI - PubMed
    1. van der Pol E, Böing AN, Gool EL, Nieuwland R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016;14:48–56. doi: 10.1111/jth.13190. - DOI - PubMed

LinkOut - more resources