Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination
- PMID: 28934170
- PMCID: PMC5677014
- DOI: 10.3390/s17102167
Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination
Abstract
Microscopy examination has been the pillar of malaria diagnosis, being the recommended procedure when its quality can be maintained. However, the need for trained personnel and adequate equipment limits its availability and accessibility in malaria-endemic areas. Rapid, accurate, accessible diagnostic tools are increasingly required, as malaria control programs extend parasite-based diagnosis and the prevalence decreases. This paper presents an image processing and analysis methodology using supervised classification to assess the presence of malaria parasites and determine the species and life cycle stage in Giemsa-stained thin blood smears. The main differentiation factor is the usage of microscopic images exclusively acquired with low cost and accessible tools such as smartphones, a dataset of 566 images manually annotated by an experienced parasilogist being used. Eight different species-stage combinations were considered in this work, with an automatic detection performance ranging from 73.9% to 96.2% in terms of sensitivity and from 92.6% to 99.3% in terms of specificity. These promising results attest to the potential of using this approach as a valid alternative to conventional microscopy examination, with comparable detection performances and acceptable computational times.
Keywords: computer-aided diagnosis; image analysis; malaria; microscopy; mobile devices.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- World Health Organization . World Malaria Report 2016. WHO; Geneva, Switzerland: 2016.
-
- World Health Organization . World Malaria Report 2015. WHO; Geneva, Switzerland: 2015.
-
- Blycroft Limited . Africa & Middle East Mobile Factbook 2Q 2014. Blycroft Publishing; Aylesbury, UK: 2014.
-
- Dolgin E. Portable pathology for Africa. IEEE Spectr. 2015;52:37–39. doi: 10.1109/MSPEC.2015.6995631. - DOI
-
- Rosado L., Correia da Costa J.M., Elias D., Cardoso J.S. A Review of Automatic Malaria Parasites Detection and Segmentation in Microscopic Images. Anti-Infect. Agents. 2016;14:11–22. doi: 10.2174/221135251401160302121107. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
