Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct 2;364(18).
doi: 10.1093/femsle/fnx176.

Carboxysomes: metabolic modules for CO2 fixation

Affiliations
Review

Carboxysomes: metabolic modules for CO2 fixation

Aiko Turmo et al. FEMS Microbiol Lett. .

Abstract

The carboxysome is a bacterial microcompartment encapsulating the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. As the site of CO2 fixation, it serves an essential role in the carbon dioxide concentrating mechanism of many chemoautotrophs and all cyanobacteria. Carboxysomes and other bacterial microcompartments self-assemble through specific protein-protein interactions that are typically mediated by conserved protein domains. In this review, we frame our current understanding of carboxysomes in the context of their component protein domains with their inherent function as the 'building blocks' of carboxysomes. These building blocks are organized in genetic modules (conserved chromosomal loci) that encode for carboxysomes and ancillary proteins essential for the integration of the organelle with the rest of cellular metabolism. This conceptual framework provides the foundation for 'plug-and-play' engineering of carboxysomes as CO2 fixation modules in a variety of biotechnological applications.

Keywords: carbon fixation; carboxysome; cyanobacteria; modularity; protein domains; synthetic biology.

PubMed Disclaimer

MeSH terms