Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2017 Sep 21;19(1):210.
doi: 10.1186/s13075-017-1417-7.

Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study

Affiliations
Comparative Study

Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study

Deepak R Jadon et al. Arthritis Res Ther. .

Abstract

Background: A recent systematic review identified four candidate serum-soluble bone-turnover biomarkers (dickkopf-1, Dkk-1; macrophage-colony stimulating factor, M-CSF; matrix metalloproteinase-3, MMP-3; osteoprotegerin, OPG) showing possible association with psoriatic arthritis (PsA). We aimed to: (i) confirm and determine if these four biomarkers are associated with PsA; (ii) differentiate psoriasis cases with and without arthritis; and (iii) differentiate PsA cases with and without axial arthritis.

Methods: A prospective cross-sectional comparative two-centre study recruited 200 patients with psoriasis without arthritis (PsC), 127 with PsA without axial arthritis (pPsA), 117 with PsA with axial arthritis (psoriatic spondyloarthritis, PsSpA), 157 with ankylosing spondylitis (AS) without psoriasis, and 50 matched healthy controls (HC). Serum biomarker concentrations were measured using ELISA. Multivariable regression and receiver operating characteristic analyses were performed.

Results: MMP-3 concentrations were significantly higher and M-CSF significantly lower in each arthritis disease group compared with HC (p ≤ 0.02). MMP-3 concentrations were significantly higher (adjusted odds ratio, ORadj 1.02 per ng/ml increase in concentration; p = 0.0004) and M-CSF significantly lower (ORadj 0.44 per ng/ml increase; p = 0.01) in PsA (pPsA and PsSpA combined) compared with PsC. Dkk-1 concentrations were significantly higher (ORadj 1.22 per ng/mL increase; p = 0.01), and OPG concentrations significantly lower (ORadj 0.20 per ng/mL increase; p = 0.02) in patients with axial arthritis (PsSpA and AS combined) than in those without (pPsA). Furthermore, Dkk-1 concentrations were significantly higher along a spectrum of increasing axial arthritis; Dkk-1 concentrations were higher in AS compared with PsSpA (ORadj 1.18 per ng/mL increase; p = 0.02). Receiver operating characteristic analysis showed MMP-3 to be the best single biomarker for differentiating PsA from PsC (AUC 0.70 for a cut-off of 14.51 ng/mL; sensitivity 0.76, specificity 0.60).

Conclusions: MMP-3 and M-CSF are biomarkers for the presence of arthritis in psoriatic disease, and could therefore be used to screen for PsA in psoriasis cohorts. Dkk-1 and OPG are biomarkers of axial arthritis; they could therefore be used to screen for the presence of axial disease in PsA cases, and help differentiate PsSpA from AS. High concentrations of Dkk-1 in AS and PsSpA compared with HC, support previous reports that Dkk-1 is dysfunctional in the spondyloarthritides.

Keywords: Ankylosing spondylitis; Biomarkers; Dkk-1; M-CSF; MMP-3; Osteoprotegerin; Psoriasis; Psoriatic arthritis; Spondylitis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study was performed with ethical approval from the Frenchay Regional Ethics Committee (12/SW/0110) and Institutional Review Boards of the Royal National Hospital for Rheumatic Diseases (RBB376) and University of Michigan, with written consent from participants, and in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Similar articles

Cited by

References

    1. Jadon DR, Nightingale AL, McHugh NJ, Lindsay MA, Korendowych E, Sengupta R. Serum soluble bone turnover biomarkers in psoriatic arthritis and psoriatic spondyloarthropathy. J Rheumatol. 2014;42(1):21–30. doi: 10.3899/jrheum.140223. - DOI - PubMed
    1. Jadon DR, Sengupta R, Nightingale A, Lindsay M, Korendowych E, Robinson G, et al. Axial Disease in Psoriatic Arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann Rheum Dis. 2016;76(4):701–7. doi: 10.1136/annrheumdis-2016-209853. - DOI - PMC - PubMed
    1. Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H, et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 2006;54(8):2665–73. doi: 10.1002/art.21972. - DOI - PubMed
    1. Tillett W, Jadon D, Costa L, Wallis D, Cavill C, McHugh J, et al. The Classification for Psoriatic Arthritis (CASPAR) criteria - a retrospective feasibility, sensitivity, and specificity study. J Rheumatol. 2012;39(1):154–6. doi: 10.3899/jrheum.110845. - DOI - PubMed
    1. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361–8. doi: 10.1002/art.1780270401. - DOI - PubMed

Publication types

Substances