Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014;26(1):12.
doi: 10.1186/s12302-014-0012-7. Epub 2014 Jul 9.

Microplastics in freshwater ecosystems: what we know and what we need to know

Affiliations

Microplastics in freshwater ecosystems: what we know and what we need to know

Martin Wagner et al. Environ Sci Eur. 2014.

Abstract

Background: While the use of plastic materials has generated huge societal benefits, the 'plastic age' comes with downsides: One issue of emerging concern is the accumulation of plastics in the aquatic environment. Here, so-called microplastics (MP), fragments smaller than 5 mm, are of special concern because they can be ingested throughout the food web more readily than larger particles. Focusing on freshwater MP, we briefly review the state of the science to identify gaps of knowledge and deduce research needs.

State of the science: Environmental scientists started investigating marine (micro)plastics in the early 2000s. Today, a wealth of studies demonstrates that MP have ubiquitously permeated the marine ecosystem, including the polar regions and the deep sea. MP ingestion has been documented for an increasing number of marine species. However, to date, only few studies investigate their biological effects. The majority of marine plastics are considered to originate from land-based sources, including surface waters. Although they may be important transport pathways of MP, data from freshwater ecosystems is scarce. So far, only few studies provide evidence for the presence of MP in rivers and lakes. Data on MP uptake by freshwater invertebrates and fish is very limited.

Knowledge gaps: While the research on marine MP is more advanced, there are immense gaps of knowledge regarding freshwater MP. Data on their abundance is fragmentary for large and absent for small surface waters. Likewise, relevant sources and the environmental fate remain to be investigated. Data on the biological effects of MP in freshwater species is completely lacking. The accumulation of other freshwater contaminants on MP is of special interest because ingestion might increase the chemical exposure. Again, data is unavailable on this important issue.

Conclusions: MP represent freshwater contaminants of emerging concern. However, to assess the environmental risk associated with MP, comprehensive data on their abundance, fate, sources, and biological effects in freshwater ecosystems are needed. Establishing such data critically depends on a collaborative effort by environmental scientists from diverse disciplines (chemistry, hydrology, ecotoxicology, etc.) and, unsurprisingly, on the allocation of sufficient public funding.

Keywords: Chemistry; Ecotoxicology; Environmental quality; Litter; Microplastics; Monitoring; Plastics; Polymers; Review; Water framework directive.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Microplastics in sediments from the rivers Elbe (A), Mosel (B), Neckar (C), and Rhine (D). Note the diverse shapes (filaments, fragments, and spheres) and that not all items are microplastics (e.g., aluminum foil (C) and glass spheres and sand (D), white arrowheads). The white bars represent 1 mm.
Figure 2
Figure 2
Research aspects with regard to freshwater microplastics. All areas need to be investigated more thoroughly to assess the environmental risk associated with microplastics in freshwater ecosystems.

References

    1. Andrady AL, Neal MA. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci. 2009;364:1977–1984. doi: 10.1098/rstb.2008.0304. - DOI - PMC - PubMed
    1. Barnes DK, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci. 2009;364:1985–1998. doi: 10.1098/rstb.2008.0205. - DOI - PMC - PubMed
    1. Gregory MR. Environmental implications of plastic debris in marine settings- entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc Lond B Biol Sci. 2009;364:2013–2025. doi: 10.1098/rstb.2008.0265. - DOI - PMC - PubMed
    1. Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013;178:483–492. doi: 10.1016/j.envpol.2013.02.031. - DOI - PubMed
    1. Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–256. doi: 10.1016/j.envpol.2013.11.019. - DOI - PubMed

LinkOut - more resources