Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 1;37(9):1198-1207.
doi: 10.1093/treephys/tpx088.

Outbreak of Drepanopeziza fungus in aspen forests and variation in stand susceptibility: leaf functional traits, compensatory growth and phenology

Affiliations

Outbreak of Drepanopeziza fungus in aspen forests and variation in stand susceptibility: leaf functional traits, compensatory growth and phenology

Anson C Call et al. Tree Physiol. .

Abstract

In the spring of 2015, a severe outbreak of the necrotrophic pathogen Drepanopeziza (also known as Marssonina) spread across large portions of aspen (Populus tremuloides Michx.) forests in the western United States. Among adjacent stands, some were diseased and others were not. Drepanopeziza infection in diseased aspen stands stimulated compensatory growth of second-flush leaves at the top of the canopy. These patterns of infection provided an opportunity to characterize associations of pathogen infection and leaf functional traits. Eight pairs of adjacent healthy and diseased aspen stands were identified across a forest landscape in northern Utah. Average leaf surface area, specific leaf area (SLA), photosynthesis, starch concentration and defense chemistry expression (phenolic glycosides and condensed tannins) were measured on original, first-flush leaves in the lower portion of the tree canopy of healthy and diseased stands and compensatory, second-flush leaves produced in the canopy top of diseased stands. Only first-flush leaves of diseased stands showed high levels of Drepanopeziza infection. Leaf area of second-flush leaves of diseased stands was threefold larger than all other leaf types in healthy or diseased stands. Lower canopy leaves of healthy stands had the highest SLA. Photosynthesis was lowest in infected first-flush leaves, highest in second-flush leaves of diseased stands and intermediate in leaves of healthy stands. Foliar starch concentrations were lower in leaves of diseased stands than leaves from healthy stands. Condensed tannins were greater in second-flush leaves than first-flush leaves in both healthy and diseased stands. Phenolic glycoside concentrations were lowest in infected leaves of diseased stands. Diseased stands leafed out a week earlier in the spring than healthy stands, which may have exposed their emerging leaves to rainy conditions that promote Drepanopeziza infection. Compensatory leaf regrowth of diseased stands appears to offset some of the functional loss (i.e., photosynthetic capacity) of infected leaves.

Keywords: Marssonina; Populus tremuloides; climate change; compensatory growth; defense chemistry; fungus; photosynthesis; plant pathogens.

PubMed Disclaimer

Similar articles

Cited by