Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017;77(7):475.
doi: 10.1140/epjc/s10052-017-4968-5. Epub 2017 Jul 17.

Higgs physics at the CLIC electron-positron linear collider

H Abramowicz  1 A Abusleme  2 K Afanaciev  3 N Alipour Tehrani  4 C Balázs  5 Y Benhammou  1 M Benoit  6 B Bilki  7 J-J Blaising  8 M J Boland  9 M Boronat  10 O Borysov  1 I Božović-Jelisavčić  11 M Buckland  12 S Bugiel  13 P N Burrows  14 T K Charles  5 W Daniluk  15 D Dannheim  4 R Dasgupta  13 M Demarteau  7 M A Díaz Gutierrez  2 G Eigen  16 K Elsener  4 U Felzmann  9 M Firlej  13 E Firu  17 T Fiutowski  13 J Fuster  10 M Gabriel  18 F Gaede  4   19 I García  10 V Ghenescu  17 J Goldstein  20 S Green  21 C Grefe  4 M Hauschild  4 C Hawkes  22 D Hynds  4 M Idzik  13 G Kačarević  11 J Kalinowski  23 S Kananov  1 W Klempt  4 M Kopec  13 M Krawczyk  23 B Krupa  15 M Kucharczyk  15 S Kulis  4 T Laštovička  24 T Lesiak  15 A Levy  1 I Levy  1 L Linssen  4 S Lukić  11 A A Maier  4 V Makarenko  3 J S Marshall  21 V J Martin  25 K Mei  21 G Milutinović-Dumbelović  11 J Moroń  13 A Moszczyński  15 D Moya  26 R M Münker  4 A Münnich  4 A T Neagu  17 N Nikiforou  4 K Nikolopoulos  22 A Nürnberg  4 M Pandurović  11 B Pawlik  15 E Perez Codina  4 I Peric  27 M Petric  4 F Pitters  4 S G Poss  4 T Preda  17 D Protopopescu  28 R Rassool  9 S Redford  4 J Repond  7 A Robson  28 P Roloff  4 E Ros  10 O Rosenblat  1 A Ruiz-Jimeno  26 A Sailer  4 D Schlatter  4 D Schulte  4 N Shumeiko  3 E Sicking  4 F Simon  18 R Simoniello  4 P Sopicki  15 S Stapnes  4 R Ström  4 J Strube  4 K P Świentek  13 M Szalay  18 M Tesař  18 M A Thomson  21 J Trenado  29 U I Uggerhøj  30 N van der Kolk  18 E van der Kraaij  16 M Vicente Barreto Pinto  6 I Vila  26 M Vogel Gonzalez  2 M Vos  10 J Vossebeld  12 M Watson  22 N Watson  22 M A Weber  4 H Weerts  7 J D Wells  31 L Weuste  18 A Winter  22 T Wojtoń  15 L Xia  7 B Xu  21 A F Żarnecki  23 L Zawiejski  15 I-S Zgura  17
Affiliations

Higgs physics at the CLIC electron-positron linear collider

H Abramowicz et al. Eur Phys J C Part Fields. 2017.

Abstract

The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The luminosity spectrum for CLIC operating at s=3TeV, where s is the effective centre-of-mass energy after beamstrahlung and initial state radiation [11]
Fig. 2
Fig. 2
Longitudinal cross section of the top right quadrant of the CLIC_ILD (a) and CLIC_SiD (b) detector concepts
Fig. 3
Fig. 3
Cross section as a function of centre-of-mass energy for the main Higgs production processes at an e+e- collider for a Higgs mass of mH=126GeV. The values shown correspond to unpolarised beams and do not include the effect of beamstrahlung
Fig. 4
Fig. 4
Leading-order Feynman diagrams of the highest cross section Higgs production processes at CLIC; Higgsstrahlung (a), WW-fusion (b) and ZZ-fusion (c)
Fig. 5
Fig. 5
Feynman diagrams of the leading-order processes at CLIC involving (a) the top Yukawa coupling gHtt, and (b) the Higgs boson trilinear self-coupling λ
Fig. 6
Fig. 6
Polar angle distributions for single Higgs events at s=350GeV, 1.4 and 3TeV, including the effects of the CLIC beamstrahlung spectrum and ISR. The distributions are normalised to unity
Fig. 7
Fig. 7
Reconstructed invariant mass of Ze+e- candidates in e+e-ZHZWW events at s=350GeV. Bremsstrahlung photons in cones of different opening angles around the electron direction are recovered as described in the text. All distributions are normalised to unity
Fig. 8
Fig. 8
Reconstructed recoil mass distributions of e+e-ZH events at s=350GeV, where ZHμ+μ-X (a) and ZHe+e-X with bremsstrahlung recovery (b). All distributions are normalised to an integrated luminosity of 500fb-1
Fig. 9
Fig. 9
Reconstructed di-jet invariant mass versus reconstructed recoil mass distributions for ZHqq¯X candidate events at s=350GeV, showing ZH signal events (a) and all background processes (b). In both cases the plots show all events passing the preselection
Fig. 10
Fig. 10
Reconstructed recoil mass distributions of e+e-ZH events at s=350GeV, showing the Hinvis. signal, assuming BR(Hinvis.)=100%, and SM backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 500fb-1
Fig. 11
Fig. 11
bb¯ likelihood versus cc¯ likelihood distributions for e+e-ZH events at s=350GeV, for (a) all events and for the different event classes: (b) Hbb¯, (c) Hcc¯, (d) Hgg, background from (e) other Higgs decays and (f) non-Higgs SM background. All distributions are normalised to an integrated luminosity of 500fb-1
Fig. 12
Fig. 12
Reconstructed Higgs candidate transverse momentum distributions for selected Hνν¯ events at s=350GeV, showing the contributions from Higgsstrahlung, WW-fusion and non-Higgs background. The distributions are normalised to an integrated luminosity of 500fb-1
Fig. 13
Fig. 13
BDT classifier distributions for Hτ+τ- events at s=350GeV, showing the signal and main backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 500fb-1
Fig. 14
Fig. 14
Event display of a Hτ+τ- event at s=1.4TeV in the CLIC_ILD detector. A 1-prong tau decay is visible in the central part of the detector (blue). The other tau lepton decays to three charged particles and is reconstructed in the forward direction (red). A few soft particles from beam-induced backgrounds are also visible (grey)
Fig. 15
Fig. 15
Reconstructed Higgs invariant mass distributions for preselected HWWqq¯qq¯ events at s=1.4TeV, showing the signal and main backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 1.5ab-1
Fig. 16
Fig. 16
Reconstructed Higgs invariant mass distributions of HZZqq¯l+l- events at s=1.4TeV, showing the signal and main backgrounds as stacked histograms a after preselection, and b after the full event selection including a cut on the BDT classifier. The distributions are normalised to an integrated luminosity of 1.5ab-1
Fig. 17
Fig. 17
Reconstructed di-photon invariant mass distribution of preselected signal Hγγ events at s=1.4TeV. The distribution is normalised to an integrated luminosity of 1.5ab-1. The statistical uncertainties correspond to the size of the simulated event sample. The line shows the fit described in the text
Fig. 18
Fig. 18
Event display of a HZγqq¯γ event at s=1.4TeV in the CLIC_SiD detector. Both jets are visible. The photon creates a cluster in the central part of the electromagnetic calorimeter (blue)
Fig. 19
Fig. 19
Reconstructed di-muon invariant mass distribution of selected Hμ+μ- events at s=3TeV. The simulated data are shown as dots while the solid line represents the fit function described in the text. The dotted line shows the background contribution of the fit function. The distribution is normalised to an integrated luminosity of 2ab-1, assuming -80% electron polarisation
Fig. 20
Fig. 20
Generated electron pseudorapidity (η=-lntanθ2) distributions for e+e-He+e- events at s=1.4 and 3TeV. The distributions are normalised to 1.5 and 2ab-1 respectively. The vertical arrows show the detector acceptance
Fig. 21
Fig. 21
Likelihood distributions for Hbb¯ events in the ZZ-fusion analysis at s=1.4TeV, shown for the signal and main background. The distributions are normalised to an integrated luminosity of 1.5ab-1
Fig. 22
Fig. 22
Event display of a tt¯Hbb¯bb¯qq¯τ-ν¯τ event at s=1.4TeV in the CLIC_SiD detector. The tau lepton decays hadronically
Fig. 23
Fig. 23
BDT classifier distributions for fully-hadronic tt¯H events at s=1.4TeV, shown for the tt¯H signal and main backgrounds. The distributions are normalised to an integrated luminosity of 1.5ab-1. The vertical arrow shows the value of the cut, chosen to give the highest significance
Fig. 24
Fig. 24
Feynman diagrams of leading-order processes that produce two Higgs bosons and missing energy at CLIC at s=1.4TeV and 3TeV. The diagram (a) is sensitive to the trilinear Higgs self-coupling λ. The diagram (b) is sensitive to the quartic coupling gHHWW. All four diagrams are included in the generated e+e-HHνeν¯e signal samples
Fig. 25
Fig. 25
Cross section for the e+e-HHνeν¯e process as a function of the ratio λ/λSM at s=1.4 and 3TeV
Fig. 26
Fig. 26
Reconstructed di-jet invariant mass distribution of selected Hbb¯ events at s=1.4TeV, showing the signal and backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 1.5ab-1
Fig. 27
Fig. 27
Illustration of the precision of the Higgs couplings of the three-stage CLIC programme determined in a model-independent fit without systematic or theoretical uncertainties. The dotted lines show the relative precisions of 1 and 5%
Fig. 28
Fig. 28
Illustration of the precision of the Higgs couplings of the three-stage CLIC programme determined in a model-dependent fit without systematic or theoretical uncertainties. The dotted lines show the relative precisions of 0.5 and 2.5%
Fig. 29
Fig. 29
Illustration of the precision of the model-independent Higgs couplings and of the self-coupling as a function of particle mass. The line shows the SM prediction that the Higgs coupling of each particle is proportional to its mass

References

    1. Aad G, et al. Phys. Lett. B. 2012;716:1. doi: 10.1016/j.physletb.2012.08.020. - DOI
    1. Chatrchyan S, et al. Phys. Lett. B. 2012;716:30. doi: 10.1016/j.physletb.2012.08.021. - DOI
    1. Englert F, Brout R. Phys. Rev. Lett. 1964;13:321. doi: 10.1103/PhysRevLett.13.321. - DOI
    1. Higgs P. Phys. Lett. 1964;12:132. doi: 10.1016/0031-9163(64)91136-9. - DOI
    1. Higgs P. Phys. Rev. Lett. 1964;13:508. doi: 10.1103/PhysRevLett.13.508. - DOI

LinkOut - more resources