Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 8:8:229.
doi: 10.3389/fendo.2017.00229. eCollection 2017.

A Practical and Time-Efficient High-Intensity Interval Training Program Modifies Cardio-Metabolic Risk Factors in Adults with Risk Factors for Type II Diabetes

Affiliations

A Practical and Time-Efficient High-Intensity Interval Training Program Modifies Cardio-Metabolic Risk Factors in Adults with Risk Factors for Type II Diabetes

Bethan E Phillips et al. Front Endocrinol (Lausanne). .

Abstract

Introduction: Regular physical activity (PA) can reduce the risk of developing type 2 diabetes, but adherence to time-orientated (150 min week-1 or more) PA guidelines is very poor. A practical and time-efficient PA regime that was equally efficacious at controlling risk factors for cardio-metabolic disease is one solution to this problem. Herein, we evaluate a new time-efficient and genuinely practical high-intensity interval training (HIT) protocol in men and women with pre-existing risk factors for type 2 diabetes.

Materials and methods: One hundred eighty-nine sedentary women (n = 101) and men (n = 88) with impaired glucose tolerance and/or a body mass index >27 kg m-2 [mean (range) age: 36 (18-53) years] participated in this multi-center study. Each completed a fully supervised 6-week HIT protocol at work-loads equivalent to ~100 or ~125% [Formula: see text]. Change in [Formula: see text] was used to monitor protocol efficacy, while Actiheart™ monitors were used to determine PA during four, weeklong, periods. Mean arterial (blood) pressure (MAP) and fasting insulin resistance [homeostatic model assessment (HOMA)-IR] represent key health biomarker outcomes.

Results: The higher intensity bouts (~125% [Formula: see text]) used during a 5-by-1 min HIT protocol resulted in a robust increase in [Formula: see text] (136 participants, +10.0%, p < 0.001; large size effect). 5-by-1 HIT reduced MAP (~3%; p < 0.001) and HOMA-IR (~16%; p < 0.01). Physiological responses were similar in men and women while a sizeable proportion of the training-induced changes in [Formula: see text], MAP, and HOMA-IR was retained 3 weeks after cessation of training. The supervised HIT sessions accounted for the entire quantifiable increase in PA, and this equated to 400 metabolic equivalent (MET) min week-1. Meta-analysis indicated that 5-by-1 HIT matched the efficacy and variability of a time-consuming 30-week PA program on [Formula: see text], MAP, and HOMA-IR.

Conclusion: With a total time-commitment of <15 min per session and reliance on a practical ergometer protocol, 5-by-1 HIT offers a new solution to modulate cardio-metabolic risk factors in adults with pre-existing risk factors for type 2 diabetes while approximately meeting the MET min week-1 PA guidelines. Long-term randomized controlled studies will be required to quantify the ability for 5-by-1 HIT to reduce the incidence of type 2 diabetes, while strategies are required to harmonize the adaptations to exercise across individuals.

Keywords: [Formula: see text]; blood pressure; detraining; exercise; health; high-intensity interval training; homeostatic model assessment of insulin resistance; variability.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow chart of participant contact, screening, and retention through the phases of the study.
Figure 2
Figure 2
An analysis of the training response to 5-by-1 HIT for V˙O2 max, MAP and HOMA-IR in men and women. Inter-participant variability in response to HIT is large for both men and women, but on average both genders respond to a similar extent. Abbreviations: V˙O2 max, maximal aerobic capacity; MAP, mean arterial pressure; HOMA-IR, homeostatic model assessment of insulin resistance; HIT, high-intensity interval training.
Figure 3
Figure 3
Comparison of the inter-individual variability to exercise training contrasting short-term high-intensity training with longer-term high-volume submaximal training. The training response to 6-weeks 5-by-1 high-intensity interval training [(A,C,E); black bars] and our previously published 8-month STRRIDE AT and AT/RT exercise training study [(B,D,F); gray bars] for V˙O2 max, MAP, and HOMA-IR. Training-induced changes in both V˙O2 max (A,B), MAP (C,D), and HOMA-IR (E,F) vary considerably in both studies and to a similar extent. Abbreviations: AT, aerobic training; RT, resistance training; V˙O2 max, maximal aerobic capacity; MAP, mean arterial pressure; HOMA-IR, homeostatic model assessment of insulin resistance.
Figure 4
Figure 4
Presentation of the responder frequency for the three main clinical biomarkers considered in this study [high-intensity interval training (HIT)] and comparison with our previously published endurance training (ET) study. Each individual was assessed for improvement in V˙O2 max, mean arterial pressure, or HOMA-IR, greater than the laboratory error, and the percentile frequency of 0, 1, 2, or 3 from three improvements was calculated. For sake of comparison, this is plotted side-by-side with the percentile frequency of 0, 1, 2, or 3 gains based on numerical improvements (a criteria that would be considered unreliable by most). Approximately 40% of subjects demonstrate improvement in only one health biomarker, while between 4 and 9% demonstrate no reliable improvement in any.
Figure 5
Figure 5
Presentation of the average retention of the training-induced changes observed 3 weeks after cessation of 5-by-1 high-intensity interval training. A value of 100% represents the training effect and a value of 0% indicates that the training effect is lost 3 weeks after training (under sedentary conditions). Significant differences from baseline: **p < 0.01, ***p < 0.001. Significant differences from post-training: ^^^p < 0.001. Abbreviations: V˙O2 max, maximal aerobic capacity; Wmax, maximal power output; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; HOMA-IR, homeostatic model assessment of insulin resistance.

References

    1. Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, et al. Fitness versus physical activity patterns in predicting mortality in men. Am J Med (2004) 117:912–8.10.1016/j.amjmed.2004.06.047 - DOI - PubMed
    1. Lee D-C, Sui X, Ortega FB, Kim Y-S, Church TS, Winett RA, et al. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br J Sports Med (2011) 45:504–10.10.1136/bjsm.2009.066209 - DOI - PubMed
    1. Diabetes Prevention Program Research Group. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet (2009) 374:1677–86.10.1016/S0140-6736(09)61457-4 - DOI - PMC - PubMed
    1. Peter I, Papandonatos GD, Belalcazar LM, Yang Y, Erar B, Jakicic JM, et al. Genetic modifiers of cardiorespiratory fitness response to lifestyle intervention. Med Sci Sport Exerc (2014) 46:302–11.10.1249/MSS.0b013e3182a66155 - DOI - PMC - PubMed
    1. Uusitupa M, Peltonen M, Lindstrom J, Aunola S, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, et al. Ten-year mortality and cardiovascular morbidity in the Finnish Diabetes Prevention Study – secondary analysis of the randomized trial. PLoS One (2009) 4:e5656.10.1371/journal.pone.0005656 - DOI - PMC - PubMed