Development of the biphasic response to glucose in fetal and neonatal rat pancreas
- PMID: 2894770
- DOI: 10.1152/ajpendo.1988.254.2.E167
Development of the biphasic response to glucose in fetal and neonatal rat pancreas
Abstract
A study on the development of biphasic insulin release and sensitivity to inhibitors has been performed using perifused rat pancreas at 19.5 days of gestation (3 days before birth) and at 3 days after birth. In the fetal pancreas, 16.7 mM glucose caused a marked stimulation of insulin release that did not, however, manifest a biphasic response and was not inhibited by verapamil, a Ca2+ channel blocker. This suggested that the immature response was due to either a lack of voltage-dependent Ca2+ channels or their failure to open in response to glucose. Depolarizing concentrations of KCl stimulated insulin release, which was inhibited by verapamil, demonstrating that functional Ca2+ channels were present. In the presence of 16.7 mM glucose, quinine, which blocks glucose-sensitive k+ channels, potentiated the response of the fetal pancreas that now became sensitive to verapamil, demonstrating that functional K+ channels were also present in the fetal pancreatic beta-cell. The immaturity of the response is not due specifically to a defect in glucose metabolism; rather the metabolism of nutrient secretagogues fails to couple with the K+ channel in the fetal islet and thus fails to depolarize the beta-cell membrane. Three days after birth the pattern of response to high glucose is biphasic. Insulin release in fetal pancreas was inhibited by epinephrine and somatostatin.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
