Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan-Feb;16(1):15-7.

In vitro evidence against the oxidation of quinidine by the sparteine/debrisoquine monooxygenase of human liver

Affiliations
  • PMID: 2894945

In vitro evidence against the oxidation of quinidine by the sparteine/debrisoquine monooxygenase of human liver

S V Otton et al. Drug Metab Dispos. 1988 Jan-Feb.

Abstract

Competitive inhibition studies using human liver microsomes have shown that quinidine (QD) has an exceptionally high affinity (60 nM) for the genetically variable cytochrome P-450 that catalyzes the formation of 4-hydroxydebrisoquine and dehydrosparteines from debrisoquine and sparteine. The present study examined the effect of sparteine and debrisoquine on the oxidation of QD by microsomes prepared from two human livers. QD and its major metabolite 3-hydroxy-QD were measured by quantitative TLC. QD 3-hydroxylation followed saturable single-site kinetics over a 1-250 microM range of QD concentrations. The Km and Vmax of the reaction in the two liver specimens were 47.5 +/- 3.5 microM and 58.7 +/- 5.9 microM, and 0.36 +/- 0.08 and 0.29 +/- 0.02 nmol of 3-hydroxy-QD/mg of protein/min. Sparteine and debrisoquine (250 microM) had no effect on this QD 3-hydroxylase activity. Furthermore, near-saturation of the sparteine/debrisoquine isozyme by 250 microM sparteine had no effect on the oxidation of QD by all routes (measured by QD disappearance from an initial level of 70 nM during an 8-hr incubation period). These observations indicate that none of the major oxidative reactions of QD are catalyzed by the sparteine/debrisoquine isozyme; QD may simply bind to this cytochrome P-450, without being oxidized by it.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources