Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;96(2-1):023105.
doi: 10.1103/PhysRevE.96.023105. Epub 2017 Aug 22.

Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection

Affiliations

Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection

Yang Zhang et al. Phys Rev E. 2017 Aug.

Abstract

We investigate fluctuations of the velocity and temperature fields in two-dimensional (2D) Rayleigh-Bénard (RB) convection by means of direct numerical simulations (DNS) over the Rayleigh number range 10^{6}≤Ra≤10^{10} and for a fixed Prandtl number Pr=5.3 and aspect ratio Γ=1. Our results show that there exists a counter-gradient turbulent transport of energy from fluctuations to the mean flow both locally and globally, implying that the Reynolds stress is one of the driving mechanisms of the large-scale circulation in 2D turbulent RB convection besides the buoyancy of thermal plumes. We also find that the viscous boundary layer (BL) thicknesses near the horizontal conducting plates and near the vertical sidewalls, δ_{u} and δ_{v}, are almost the same for a given Ra, and they scale with the Rayleigh and Reynolds numbers as ∼Ra^{-0.26±0.03} and ∼Re^{-0.43±0.04}. Furthermore, the thermal BL thickness δ_{θ} defined based on the root-mean-square (rms) temperature profiles is found to agree with Prandtl-Blasius predictions from the scaling point of view. In addition, the probability density functions of turbulent energy ɛ_{u^{'}} and thermal ɛ_{θ^{'}} dissipation rates, calculated, respectively, within the viscous and thermal BLs, are found to be always non-log-normal and obey approximately a Bramwell-Holdsworth-Pinton distribution first introduced to characterize rare fluctuations in a confined turbulent flow and critical phenomena.

PubMed Disclaimer

LinkOut - more resources