Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 26;14(1):132.
doi: 10.1186/s12966-017-0590-z.

Energy balance components in persons with paraplegia: daily variation and appropriate measurement duration

Affiliations

Energy balance components in persons with paraplegia: daily variation and appropriate measurement duration

Tom E Nightingale et al. Int J Behav Nutr Phys Act. .

Abstract

Background: Despite obesity being highly prevalent in persons with spinal cord injury (SCI), our current understanding of the interactions between energy balance components, which may contribute to this, is limited. The primary aim of this study is to identify the intra-individual variability of physical activity dimensions across days and suggest an appropriate monitoring time frame for these constructs in adults with SCI. The secondary aim is to examine these parameters with regard to energy intake and dietary macronutrient composition.

Methods: Participants [33 men and women with chronic (> 1 year post injury) paraplegia; age = 44 ± 9 years (mean ± S.D.] wore an Actiheart™ PA monitor and completed a weighed food diary for 7 consecutive days. Spearman-Brown Prophecy Formulae, based on Intraclass Correlations of .80 (acceptable reliability), were used to predict the number of days required to measure energy balance components. Linear mixed-effects analyses and magnitude-based inferences were performed for all energy intake, expenditure and physical activity dimensions. Adjustments were made for age, injury level, wear time, sex, day of the week and measurement order as fixed effects.

Results: To reliably measure energy expenditure components; 1 day [total energy expenditure (TEE)], 2 days [physical activity energy expenditure (PAEE), light-intensity activity, moderate-to-vigorous PA (MVPA)], 3 days [physical activity level (PAL)] and 4 days (sedentary behaviour) are necessary. Device wear time (P < 0.02), injury level (P < 0.04) and sex (P < 0.001) were covariates for energy expenditure components. Four and ≤24 days are required to reliably measure total energy intake (kcal) and diet macronutrient composition (%), respectively. Measurement order (from day 1-7) was a covariate for total energy intake (P = 0.01).

Conclusions: This is the first study to demonstrate the variability of energy intake and expenditure components in free-living persons with chronic (> 1 year) paraplegia and propose suitable measurement durations to achieve acceptable reliability in outcome measures. Device wear time and measurement order play a role in the quality of energy expenditure and intake data, respectively, and should be considered when designing and analysing studies of energy balance components in persons with SCI.

Trial registration: N/A.

Keywords: Assessment; Diet; Energy balance; Energy expenditure; Energy intake; Intra-individual variance; Measurement; Paraplegia; Physical activty; Spinal cord injury.

PubMed Disclaimer

Conflict of interest statement

Authors’ information

N/A

Ethics approval and consent to participate

The data presented in this study was collected as part of two independent studies, with ethical approval granted by the University of Bath’s Research Ethics Approval Committee for Health (REACH) and the South West (Exeter) National Research Ethics Service Committee (REC reference number 14/SW/0106). All participants provided signed and informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Number of monitoring days necessary to achieve acceptable reliability (ICC > 0.80) in various energy expenditure (a) and intake (b) variables. ICC, intra-class correlation; MVPA, moderate-to-vigorous physical activity; PAEE, activity energy expenditure; PAL, physical activity level; TEE, total energy expenditure
Fig. 2
Fig. 2
Components of energy balance under free-living conditions in individuals with chronic paraplegia. Values are means ± SEs (percentage that each component contributes to total daily energy intake and expenditure). CHO: carbohydrate, DIT: Diet-induced thermogenesis, EtOH: alcohol, PAEE: physical activity energy expenditure, PRO: protein, RMR: resting metabolic rate

Similar articles

Cited by

References

    1. Buchholz AC, McGillivray CF, Pencharz PB. Physical activity levels are low in free-living adults with chronic paraplegia. Obes Res. 2003;11(4):563–570. doi: 10.1038/oby.2003.79. - DOI - PubMed
    1. Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN, Waters RL, Bauman WA. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95(6):2398–2407. doi: 10.1152/japplphysiol.00729.2002. - DOI - PubMed
    1. Bauman WA, Spungen AM. Disorders of carbohydrate and lipid-metabolism in veterans with paraplegia or quadriplegia - a model of premature aging. Metabolism. 1994;43(6):749–756. doi: 10.1016/0026-0495(94)90126-0. - DOI - PubMed
    1. LaVela SL, Weaver FM, Goldstein B, Chen K, Miskevics S, Rajan S, Gater DR. Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med. 2006;29(4):387–395. doi: 10.1080/10790268.2006.11753887. - DOI - PMC - PubMed
    1. Lai YJ, Lin CL, Chang YJ, Lin MC, Lee ST, Sung FC, Lee WY, Kao CH. Spinal cord injury increases the risk of Type 2 diabetes: a population-based cohort study. Spine Journal. 2014;14(9):1957–1964. doi: 10.1016/j.spinee.2013.12.011. - DOI - PubMed