The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation
- PMID: 28951016
- PMCID: PMC5860927
- DOI: 10.1016/j.epidem.2017.09.001
The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation
Abstract
The Ebola forecasting challenge organized by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Fogarty International Center relies on synthetic disease datasets generated by numerical simulations of a highly detailed spatially-structured agent-based model. We discuss here the architecture and technical steps of the challenge, leading to datasets that mimic as much as possible the data collection, reporting, and communication process experienced in the 2014-2015 West African Ebola outbreak. We provide a detailed discussion of the model's definition, the epidemiological scenarios' construction, synthetic patient database generation and the data communication platform used during the challenge. Finally we offer a number of considerations and takeaways concerning the extension and scalability of synthetic challenges to other infectious diseases.
Keywords: Computational modeling; Ebola; Forecast.
Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Figures






Similar articles
-
The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.Epidemics. 2018 Mar;22:13-21. doi: 10.1016/j.epidem.2017.08.002. Epub 2017 Aug 26. Epidemics. 2018. PMID: 28958414 Free PMC article.
-
Using data-driven agent-based models for forecasting emerging infectious diseases.Epidemics. 2018 Mar;22:43-49. doi: 10.1016/j.epidem.2017.02.010. Epub 2017 Feb 22. Epidemics. 2018. PMID: 28256420 Free PMC article.
-
Two approaches to forecast Ebola synthetic epidemics.Epidemics. 2018 Mar;22:36-42. doi: 10.1016/j.epidem.2017.02.011. Epub 2017 Feb 24. Epidemics. 2018. PMID: 28325495
-
Forecasting the 2014 West African Ebola Outbreak.Epidemiol Rev. 2019 Jan 31;41(1):34-50. doi: 10.1093/epirev/mxz013. Epidemiol Rev. 2019. PMID: 31781750
-
Ebola: Anatomy of an Epidemic.Annu Rev Med. 2017 Jan 14;68:359-370. doi: 10.1146/annurev-med-052915-015604. Epub 2016 Oct 21. Annu Rev Med. 2017. PMID: 27813879 Review.
Cited by
-
Deep learning of contagion dynamics on complex networks.Nat Commun. 2021 Aug 5;12(1):4720. doi: 10.1038/s41467-021-24732-2. Nat Commun. 2021. PMID: 34354055 Free PMC article.
-
Epidemic tracking and forecasting: Lessons learned from a tumultuous year.Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):e2111456118. doi: 10.1073/pnas.2111456118. Proc Natl Acad Sci U S A. 2021. PMID: 34903658 Free PMC article. No abstract available.
-
Ensemble bootstrap methodology for forecasting dynamic growth processes using differential equations: application to epidemic outbreaks.BMC Med Res Methodol. 2021 Feb 14;21(1):34. doi: 10.1186/s12874-021-01226-9. BMC Med Res Methodol. 2021. PMID: 33583405 Free PMC article.
-
Emergency preparedness for public health threats, surveillance, modelling & forecasting.Indian J Med Res. 2021 Mar;153(3):287-298. doi: 10.4103/ijmr.IJMR_653_21. Indian J Med Res. 2021. PMID: 33906991 Free PMC article. Review.
-
The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.Epidemics. 2018 Mar;22:13-21. doi: 10.1016/j.epidem.2017.08.002. Epub 2017 Aug 26. Epidemics. 2018. PMID: 28958414 Free PMC article.
References
-
- Ajelli M, Merler S, Fumanelli L, y Piontti AP, Dean NE, Longini IM, Halloran ME, Vespignani A. Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. BMC Med. 2016;14:130. doi: 10.1186/s12916-016-0678-3. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical