Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb;125(2):169-178.
doi: 10.1016/j.ophtha.2017.08.027. Epub 2017 Sep 23.

Accuracy of Intraocular Lens Calculation Formulas

Affiliations

Accuracy of Intraocular Lens Calculation Formulas

Ronald B Melles et al. Ophthalmology. 2018 Feb.

Abstract

Purpose: To compare the accuracy of intraocular lens (IOL) calculation formulas (Barrett Universal II, Haigis, Hoffer Q, Holladay 1, Holladay 2, Olsen, and SRK/T) in the prediction of postoperative refraction using a single optical biometry device.

Design: Retrospective consecutive case series.

Participants: A total of 13 301 cataract operations with an AcrySof SN60WF implant and 5200 operations with a SA60AT implant (Alcon Laboratories, Inc., Fort Worth, TX).

Methods: All patients undergoing cataract surgery between July 1, 2014, and December 31, 2015, with Lenstar 900 optical biometry were eligible. A single eye per patient was included in the final analysis, resulting in a total of 18 501 cases. We compared the performance of each formula with respect to the error in predicted spherical equivalent and evaluated the effect of applying the Wang-Koch (WK) adjustment for eyes with axial length >25.0 mm on 4 of the formulas.

Results: For the SN60WF, the standard deviation of the prediction error, in order of lowest to highest, was the Barrett Universal II (0.404), Olsen (0.424), Haigis (0.437), Holladay 2 (0.450), Holladay 1 (0.453), SRK/T (0.463), and Hoffer Q (0.473), and the results for the SA60AT were similar. The Barrett formula was significantly better than the other formulas in postoperative refraction prediction (P < 0.01) for both IOL types. Application of the WK axial length modification generally resulted in a shift from hyperopic to myopic outcomes in long eyes.

Conclusions: Overall, the Barrett Universal II formula had the lowest prediction error for the 2 IOL models studied.

PubMed Disclaimer

Comment in

Publication types