Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 18;139(41):14676-14683.
doi: 10.1021/jacs.7b07987. Epub 2017 Oct 6.

Tuning Intrinsic and Extrinsic Proton Conduction in Metal-Organic Frameworks by the Lanthanide Contraction

Affiliations

Tuning Intrinsic and Extrinsic Proton Conduction in Metal-Organic Frameworks by the Lanthanide Contraction

Norman E Wong et al. J Am Chem Soc. .

Abstract

Seven isomorphous lanthanide metal-organic frameworks in the PCMOF-5 family, [Ln(H5L)(H2O)n](H2O) (L = 1,2,4,5-tetrakis(phosphonomethyl)benzene, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) have been synthesized and characterized. This family contains 1-D water-filled channels lined with free hydrogen phosphonate groups and gives a very low activation energy pathway for proton transfer. The lanthanide contraction was employed to systematically vary the unit cell dimensions and tune the proton conducting pathways. LeBail fitting of the crystalline series shows that the crystallographic a-axis, along the channel, can be varied in increments less than 0.02 Å correspondingly shortening the proton transfer pathway. The proton conductivities for the La and Pr complexes were roughly an order of magnitude higher than other members of the series (10-3 S cm-1 versus 10-4 S cm-1). Single crystal structures of the high and low conducting members of the series (La, Pr for high and Ce for low) affirm the structural similarities extend beyond the unit cell parameters to positions of free acid groups and included water molecules. Scanning electron microscopy reveals marked differences in particle size of the different members of the Ln series owing to lattice strain effects induced by changing the lanthanide. Notably, the high conducting La and Pr complexes have the largest particle sizes. This result contradicts any notion that degradation of the MOF at grain boundaries is enabling the observed conductivity as proton conduction dominated by extrinsic pathways would be enabled by small particles (i.e., the La and Pr complexes would be the worst conductors). Proton conductivity measurements of a ball milled sample of the La complex corroborate this result.

PubMed Disclaimer

Publication types

LinkOut - more resources