Associations of Annual Ambient Fine Particulate Matter Mass and Components with Mitochondrial DNA Abundance
- PMID: 28953603
- PMCID: PMC5672826
- DOI: 10.1097/EDE.0000000000000717
Associations of Annual Ambient Fine Particulate Matter Mass and Components with Mitochondrial DNA Abundance
Abstract
Background: Fine particulate matter (PM2.5) represents a mixture of components with potentially different toxicities. However, little is known about the relative effects of PM2.5 mass and PM2.5 components on mitochondrial DNA (mtDNA) abundance, which may lie on the pathway of PM2.5-associated disease.
Methods: We studied 646 elderly male participants in the Normative Aging Study from Greater Boston to investigate associations of long-term exposure to PM2.5 mass and PM2.5 components with mtDNA abundance. We estimated concentrations of pollutants for the 365-day preceding examination at each participant's address using spatial- and temporal-resolved chemical transport models. We measured blood mtDNA abundance using RT-PCR. We applied a shrinkage and selection method (adaptive LASSO) to identify components most predictive of mtDNA abundance, and fit multipollutant linear mixed-effects models with subject-specific intercept to estimate the relative effects of individual PM component.
Results: MtDNA abundance was negatively associated with PM2.5 mass in the previous year and-after adjusting for PM2.5 mass-several PM2.5 components, including organic carbon, sulfate (marginally), and nitrate. In multipollutant models including as independent variables PM2.5 mass and PM2.5 components selected by LASSO, nitrate was associated with mtDNA abundance. An SD increase in annual PM2.5-associated nitrate was associated with a 0.12 SD (95% confidence intervals [CI] = -0.18, -0.07) decrease in mtDNA abundance. Analyses restricted to PM2.5 annual concentration below the current 1-year U.S. Environmental Protection Agency standard produced similar results.
Conclusions: Long-term exposures to PM2.5-associated nitrate were related to decreased mtDNA abundance independent of PM2.5 mass. Mass alone may not fully capture the potential of PM2.5 to oxidize the mitochondrial genome.See video abstract at, http://links.lww.com/EDE/B274.
References
-
- Dockery DW, Pope CA, 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Jr, Speizer FE. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993;329(24):1753–9. - PubMed
-
- Pope CA, 3rd, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW., Jr Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995;151(3 Pt 1):669–74. - PubMed
-
- Council NNR, editor. Council NR. Research Priorities for Airborne Particulate Matter IV - Continuing Research Progress Committee on Research Priorities for Airbone Particulate Matter. Washington, DC: National Academy Press; 2004.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
