Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2017 Sep 27;12(9):e0184929.
doi: 10.1371/journal.pone.0184929. eCollection 2017.

Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B

Affiliations
Clinical Trial

Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B

Miriam Rosás-Umbert et al. PLoS One. .

Abstract

The most relevant endpoint in therapeutic HIV vaccination is the assessment of time to viral rebound or duration of sustained control of low-level viremia upon cART treatment cessation. Structured treatment interruptions (STI) are however not without risk to the patient and reliable predictors of viral rebound/control after therapeutic HIV-1 vaccination are urgently needed to ensure patient safety and guide therapeutic vaccine development. Here, we integrated immunological and virological parameters together with viral rebound dynamics after STI in a phase I therapeutic vaccine trial of a polyvalent MVA-B vaccine candidate to define predictors of viral control. Clinical parameters, proviral DNA, host HLA genetics and measures of humoral and cellular immunity were evaluated. A sieve effect analysis was conducted comparing pre-treatment viral sequences to breakthrough viruses after STI. Our results show that a reduced proviral HIV-1 DNA at study entry was independently associated with two virological parameters, delayed HIV-1 RNA rebound (p = 0.029) and lower peak viremia after treatment cessation (p = 0.019). Reduced peak viremia was also positively correlated with a decreased number of HLA class I allele associated polymorphisms in Gag sequences in the rebounding virus population (p = 0.012). Our findings suggest that proviral DNA levels and the number of HLA-associated Gag polymorphisms may have an impact on the clinical outcome of STI. Incorporation of these parameters in future therapeutic vaccine trials may guide refined immunogen design and help conduct safer STI approaches.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: BM and CB are inventors of an alternative HIV immunogen and have financial interests in AELIX Therapeutics.

Figures

Fig 1
Fig 1. Increased cellular immune responses to HIV after treatment interruption.
Magnitude (A) and breadth (B) of T cell responses to the entire HIV-1 proteome at start (STI-w0) and after w12 (STI-w12) of structured treatment in interruption (STI) is shown for placebo recipients (white) and the vaccinated group (grey). Median and interquartile range and p-values (Wilcoxon paired test) are shown. In (C), responses are divided into responses to regions of HIV that are covered (IN) or are not covered (OUT) by the MVA-B vaccine immunogen sequence.
Fig 2
Fig 2. Structured treatment interruption (STI) increases levels of Env specific antibodies.
Mean flourescence intensity (MFI) of stained MOLT cells expressing trimeric Env (from isolates HIV-1NL4.3 and HIV-1BaL) or lacking Env expression (uninfected) is show for plasma samples obtained at the start (STI-w0) or after 12 weeks (STI-w12) into STI in the placebo (white, n = 10) or the vaccinated (grey, n = 15) group. P-values for Wilcoxon paired test comparing w0-STI values to w12-STI are shown on top of the figure.
Fig 3
Fig 3. HIV-1 DNA copy numbers in CD4 cells before vaccination predicts extent of viral reservoir replenishment and plasma viral loads after structured treatment interruption (STI).
(A) HIV DNA copy numbers in PBMC-derived, purified CD4+ T cells at start of STI (STI-w0), and 2 (STI-w2) or 12 (STI-w12) weeks after start of STI in placebo (white) and vaccinated individuals (grey). Median copy number (with interquartile range) is shown in all conditions (p-values Wilcoxon paired test). (B) Correlation between HIV DNA copy number in purified CD4+ T cells before any vaccination and after 12 weeks into STI (n = 16). Spearman correlation coefficient and p-value are shown. Linear regression line with 95% confidence intervals is represented. (C) Correlation between HIV DNA copy numbers per 106 CD4 T cells at 12 weeks into STI and plasma viral loads (log10 copies/mL) 4 or 8 weeks after start of STI. Viral load at 4 weeks into STI (n = 16) is shown in white triangles and at 8 weeks (n = 12) in black triangles (r and p-value are shown for Spearman correlation). (D) Correlation between peak of viral load (log10 copies/mL) uring STI and HIV DNA copies detected before vaccination. Spearman correlation coefficient and p-value are shown. Linear regression line with 95% confidence intervals is represented.
Fig 4
Fig 4. No evidence of immune selection pressure in rebounding virus after therapeutic MVA-B vaccination.
(A) Pairwise distances to the reference sequence HXB2 is shown for samples obtained before ART initiation and after 2–12 weeks of treatment interruption. P-value for Mann Whitney test between defined groups (placebo and vaccinated) is shown. (B) The number of HLA-associated polymorphisms in Gag is shown for sequences obtained before cART (n = 3 placebo, n = 12 vaccines) and during viral rebound after STI (n = 7 placebo, n = 19 vaccines). P-value is shown for Wilcoxon paired test when comparing between pre-cART and STI data and p-value for Mann Whitney test is shown to compare groups.

References

    1. Global AIDS Update 2016 | UNAIDS [Internet]. [cited 1 Mar 2017]. Available: http://www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016
    1. Crawford KW, Ripin DHB, Levin AD, Campbell JR, Flexner C, participants of Conference on Antiretroviral Drug Optimization. Optimising the manufacture, formulation, and dose of antiretroviral drugs for more cost-efficient delivery in resource-limited settings: a consensus statement. Lancet Infect Dis. 2012;12: 550–60. doi: 10.1016/S1473-3099(12)70134-2 - DOI - PubMed
    1. Holmes CB, Coggin W, Jamieson D, Mihm H, Granich R, Savio P, et al. Use of generic antiretroviral agents and cost savings in PEPFAR treatment programs. JAMA. 2010;304: 313–20. doi: 10.1001/jama.2010.993 - DOI - PubMed
    1. Katlama C, Deeks SG, Autran B, Martinez-picado J, van Lunzen J, Rouzioux C, et al. Barries to a Cure: New concepts in targeting and eradicating HIV-1 reservoirs. Lancet. 2013;381 doi: 10.1016/S0140-6736(13)60104-X.Barriers - DOI - PMC - PubMed
    1. Li JZ, Brumme ZL, Brumme CJ, Wang H, Spritzler J, Robertson MN, et al. Factors associated with viral rebound in HIV-1-infected individuals enrolled in a therapeutic HIV-1 gag vaccine trial. J Infect Dis. 2011;203: 976–83. doi: 10.1093/infdis/jiq143 - DOI - PMC - PubMed

Publication types