Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Mar;198(1):107-13.
doi: 10.1016/0027-5107(88)90046-2.

Nucleotide sequence determination of point mutations at the mouse HPRT locus using in vitro amplification of HPRT mRNA sequences

Affiliations
Comparative Study

Nucleotide sequence determination of point mutations at the mouse HPRT locus using in vitro amplification of HPRT mRNA sequences

H Vrieling et al. Mutat Res. 1988 Mar.

Abstract

Cloning of genomic and cDNA sequences of mammalian genes has made it possible to analyze at the molecular level mutations induced by radiation and chemical mutagens. The X-linked HPRT gene is very suitable for these investigations because in addition to the availability of cell culture systems, HPRT mutants can also be obtained directly from the lymphocytes of mouse and man. Recently a new technique has been introduced by Saiki and co-workers which allows the cloning and sequencing of small specific DNA segments from total genomic DNA after in vitro amplification of those segments up to 200,000-fold (Saiki et al., 1985). We have adapted this so-called polymerase chain reaction (PCR) procedure in such a way that the entire mouse HPRT-coding region could be amplified, cloned and sequenced. Instead of genomic DNA, we have used RNA as template in the PCR reactions. This allows us to detect point mutations in HPRT exon sequences in a very efficient way, since the DNA sequence of all 9 exons, which are scattered over 34 kb of DNA, can be obtained from only one amplification experiment. We studied the nature of 3 N-ethyl-N-nitrosourea (ENU)-induced HPRT mutants from cultured mouse lymphoma cells. One contains an A:T----G:C transition, the second an A:T----T:A transversion, whereas the third mutant is the result of abnormal splicing events, probably due to a mutation in the 3' splice site of the first intron.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources