Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct;10(10):e005614.
doi: 10.1161/CIRCIMAGING.117.005614.

Machine Learning Approaches in Cardiovascular Imaging

Affiliations
Review

Machine Learning Approaches in Cardiovascular Imaging

Mir Henglin et al. Circ Cardiovasc Imaging. 2017 Oct.

Abstract

Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging.

Keywords: algorithms; artificial intelligence; automation; workflow.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Machine Learning in Context
Figure 2
Figure 2
Image Analysis Workflow
Figure 3
Figure 3
Image Analysis in Context

References

    1. Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG, Caruana R, Fine MJ, Glymour C, Gordon G, Hanusa BH, Janosky JE, Meek C, Mitchell T, Richardson T, Spirtes P. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med. 1997;9:107–138. - PubMed
    1. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, Kapoor WN. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med. 1997;336:243–250. - PubMed
    1. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–2410. - PubMed
    1. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–118. - PMC - PubMed
    1. LeCun L, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–2324.

Publication types