Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;13(3):47-56.
doi: 10.15171/ijb.1231.

Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species

Affiliations

Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species

Farshid Talat et al. Iran J Biotechnol. 2015 Sep.

Abstract

Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton.G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. Present study was conducted in order to analyse the sequence of its chloroplast.

Objectives: Present study was conducted to study and compare the complete chloroplast sequence of G. thurberi, analyses of its genome structure, gene content and organization, repeat sequence and codon usage and comparison with two cultivated allotetraploid sequenced cotton species.

Materials and methods: The available sequence was assembled by DNAman (Version 8.1.2.378). Gene annotation was mainly performed by DOGMA. The map of genome structure and gene distribution were carried out using OGDRAW V1.1. Relative synonymous codon usage (RSCU) of different codons in each gene sample was calculated by codonW in Mobyle. To determine the repeat sequence and location, an online version of REPuter was used.

Results: The G. thurberi chloroplast (cp) genome is 160264 bp in length with conserved quadripartite structure. Single copy region of cp genome is separated by the two inverted regions. The large single copy region is 88,737 bp, and the small single copy region is 20,271 bp whereas the inverted repeat is 25,628 bp each. The plastidic genome has 113 single genes and 20 duplicated genes. The singletones encode 79 proteins, 4 ribosomal RNA genes and 30 transfer RNA genes.

Conclusions: Amongst all plastidic genes only 18 genes appeared to have 1-2 introns and when compared with cpDNA of two cultivated allotetraploid, rps18 was the only duplicated gene in G.thurberi. Despite the high level of conservation in cp genome SSRs ,these are useful in analysis of genetic diversity due to their greater efficiency as opposed to genomic SSRs. Low GC content is a significant feature of plastidic genomes, which is possibly formed after endosymbiosis by DNA replication and repair.

Keywords: Chloroplast genome; Complete sequence; Gossypium thurberi.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3

References

    1. Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004;11(4):247–261. doi: 10.1093/dnares/11.4.247. - DOI - PubMed
    1. Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. Complete nucleotide sequence of the Cryptomeria japonica D Don chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol. 2008;8:70. doi: 10.1186/1471-2229-8-70. - DOI - PMC - PubMed
    1. Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Mol Biol. 2005;59(2):309–322. doi: 10.1007/s11103-005-8882-0. - DOI - PubMed
    1. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993;21(15):3537–3544. doi: 10.1093/nar/21.15.3537. - DOI - PMC - PubMed
    1. Young-Kyu Kim CWP, Ki-Joong K. Complete Chloroplast DNA Sequence from a Korean Endemic Genus,Megaleranthis saniculifolia, and Its Evolutionary Implications Mol. Cells. 2009;27(3):365–381. doi: 10.1007/s10059-009-0047-6. - DOI - PubMed

LinkOut - more resources