Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 1;8(7):4840-4847.
doi: 10.1039/c7sc01218g. Epub 2017 May 4.

Single operation palladium catalysed C(sp3)-H functionalisation of tertiary aldehydes: investigations into transient imine directing groups

Affiliations

Single operation palladium catalysed C(sp3)-H functionalisation of tertiary aldehydes: investigations into transient imine directing groups

S St John-Campbell et al. Chem Sci. .

Abstract

Simple amine and diamine derivatives can promote the palladium catalysed direct β-C-H arylation of aliphatic aldehydes via transient imine formation. Trifluoroacetate was shown to be crucial in promoting the reaction. Sub-stoichiometric quantities of simple N-tosylethylenediamine was shown to form a bidentate directing group with an imine linkage. Isolation of an unsymmetrical palladacycle has shown different potential binding modes of the secondary NTs coordinating group by single crystal X-ray diffraction analysis, suggestive of a hemilabile ligand.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Transient directing groups for C–H arylation of aldehydes.
Fig. 1
Fig. 1. Proposed directing group structure.
Scheme 2
Scheme 2. Screen of bidentate and monodentate directing groups for the arylation of pivaldehyde derived imines. aYields quoted as combined yield for 3a–c, with separate mono-, di- and triarylated yields quoted below. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Scheme 3
Scheme 3. Screen of bidentate and monodentate directing groups for the direct arylation of pivaldehyde. Reaction conditions: pivaldehyde (0.2 mmol), 4-iodoanisole (2.6 equiv.), HFIP : AcOH (1 : 1, 0.5 M). aYields quoted as combined yield for 3a–c, with separate mono-, di- and triarylated yields quoted below. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Scheme 4
Scheme 4. Scope of aryl iodides to form aldehydes 3–12. Reaction conditions: pivaldehyde (0.4 mmol), 1a (0.5 equiv.), Ar-I (2.6 equiv.), HFIP : AcOH (1 : 1, 0.5 M). Yields correspond to sum of yields of isolated products, with individual yields a–c given below. aReaction time of 24 h. bIsolated as a mixture of di- and tri-arylated products. cUsing 1x in place of 1a. dReaction time of 6 h.
Scheme 5
Scheme 5. Reaction scope varying the aldehyde. Ar = C6H4OMe. Reaction conditions: aldehyde (0.4 mmol), 1a (0.5 equiv.), 4-iodoanisole (2.6 equiv.), HFIP : AcOH (1 : 1, 0.5 M). Yields correspond to sum of yields of isolated products, with individual yields a and b given below. aUsing 1x in place of 1a.
Scheme 6
Scheme 6. Arylation of 3a and 3b. Conditions: 3a (0.099 mmol) or 3b (0.064 mmol), 1a (0.5 equiv.), 4-iodoanisole (2.6 equiv.), Pd(OPiv)2 (5 mol%), AgTFA (2 equiv.), DMSO (1 equiv.), HFIP : AcOH (1 : 1, 0.5 M), 130 °C, 3 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Scheme 7
Scheme 7. Formation and reactions of 2a-Pd-dimer. aConditions: 2a-Pd-dimer (0.04 mmol), 4-iodoanisole (6.0 equiv.), AgOAc (4.0 equiv.), AcOH (0.3 M), 120 °C, 24 h. bConditions: pivaldehyde (0.2 mmol), 1a (0.5 equiv.), 4-iodoanisole (2.6 equiv.), 2a-Pd-dimer (2.5 mol%), AgTFA (2.0 equiv.), HFIP : AcOH (1 : 1, 0.5 M), 130 °C, 3 h. cYields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Fig. 2
Fig. 2. Crystal structure of 2a-Pd-dimer. Selected bond lengths (Å), Pd1–C1 2.009(3), Pd1–N4 1.952(3), Pd1–N7 2.253(3), Pd1–O41 2.046(2), Pd2–N7 2.085(3), Pd2–C21 2.003(3), Pd2–N24 2.018(3), Pd2–O43 2.244(2). The Pd1···Pd2 separation is 3.1098(3) Å.

References

    1. Wencel-Delord J., Glorius F. Nat. Chem. 2013;5:369–375. - PubMed
    2. Yamaguchi J., Yamaguchi A. D., Itami K. Angew. Chem., Int. Ed. 2012;51:8960–9009. - PubMed
    3. Liao K., Negretti S., Musaev D. G., Bacsa J., Davies H. M. L. Nature. 2016;533:230–234. - PubMed
    4. Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. - PMC - PubMed
    5. Godula K., Sames D. Science. 2006;312:67–72. - PubMed
    6. He J., Wasa M., Chan K. S. L., Shao Q., Yu J.-Q. Chem. Rev. 2017 doi: 10.1021/acs.chemrev.6b00622. - DOI - PMC - PubMed
    7. Hartwig J. F., Larsen M. A. ACS Cent. Sci. 2016;2:281–292. - PMC - PubMed
    1. Daugulis O., Roane J., Tran L. D. Acc. Chem. Res. 2015;48:1053–1064. - PMC - PubMed
    2. Chen X., Engle K. M., Wang D.-H., Yu J.-Q. Angew. Chem., Int. Ed. 2009;48:5094–5115. - PMC - PubMed
    3. Baudoin O. Chem. Soc. Rev. 2011;40:4902–4911. - PubMed
    4. Huang Z., Dong G. Tetrahedron Lett. 2014;55:5869–5889.
    5. Rouquet G., Chatani N. Angew. Chem., Int. Ed. 2013;52:11726–11743. - PubMed
    1. Garcia-Lopez J. A., Mehta V. P. ChemCatChem. 2017;9:1149–1156.
    2. Knight B. J., Rothbaum J. O., Ferreira E. M. Chem. Sci. 2016;7:1982–1987. - PMC - PubMed
    3. He C., Gaunt M. J. Angew. Chem., Int. Ed. 2015;54:15840–15844. - PubMed
    4. Topczewski J. J., Cabrera P. J., Saper N. I., Sanford M. S. Nature. 2016;531:220–224. - PMC - PubMed
    5. Jazzar R., Hitce J., Renaudat A., Sofack-Kreutzer J., Baudoin O. Chem.–Eur. J. 2010;16:2654–2672. - PubMed
    1. Lapointe D., Fagnou K. Chem. Lett. 2010;39:1118–1126.
    2. Ackermann L. Chem. Rev. 2011;111:1315–1345. - PubMed
    3. Lafrance M., Fagnou K. J. Am. Chem. Soc. 2006;128:16496–16497. - PubMed
    1. Zaitsev V. G., Shabashov D., Daugulis O. J. Am. Chem. Soc. 2005;127:13154–13155. - PubMed