Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 11;9(40):35341-35348.
doi: 10.1021/acsami.7b08026. Epub 2017 Sep 29.

Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips

Affiliations

Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips

Jingjing Liu et al. ACS Appl Mater Interfaces. .

Abstract

Nanoscale wear is a critical issue that limits the performance of tip-based nanomanufacturing and nanometrology processes based on atomic force microscopy (AFM). Yet, a full scientific understanding of nanoscale wear processes remains in its infancy. It is therefore important to quantitatively understand the wear behavior of AFM tips. Tip wear is complex to understand due to adhesive forces and contact stresses that change substantially as the contact geometry evolves due to wear. Here, we present systematic characterization of the wear of commercial Si AFM tips coated with thin diamond-like carbon (DLC) coatings. Wear of DLC was measured as a function of external loading and sliding distance. Transmission electron microscopy imaging, AFM-based adhesion measurements, and tip geometry estimation via inverse imaging were used to assess nanoscale wear and the contact conditions over the course of the wear tests. Gradual wear of DLC with sliding was observed in the experiments, and the tips evolved from initial paraboloidal shapes to flattened geometries. The wear rate is observed to increase with the average contact stress, but does not follow the classical wear law of Archard. A wear model based on the transition state theory, which gives an Arrhenius relationship between wear rate and normal stress, fits the experimental data well for low mean contact stresses (<0.3 GPa), yet it fails to describe the wear at higher stresses. The wear behavior over the full range of stresses is well described by a recently proposed multibond wear model that exhibits a change from Archard-like behavior at high stresses to a transition state theory description at lower stresses.

Keywords: AFM tips; DLC; TEM characterization; multibond wear model; nanoscale wear; tip-based nanomanufacturing.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources