Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May 15;263(14):6606-12.

Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli

Affiliations
  • PMID: 2896197
Free article

Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli

B D Cain et al. J Biol Chem. .
Free article

Abstract

Oligonucleotide-directed mutagenesis was used to generate mutations in the a subunit gene (uncB) altering the glutamic acid 219 and the histidine 245 codons. Substitutions of aspartic acid, glutamine, histidine, and leucine for glutamic acid at position 219 neither alter the hydrolytic activity of membrane-bound F1 nor the association of F1 with F0. However, the efficiency of F0-mediated proton translocation was reduced to varying degrees. Replacement of glutamic acid 219 with leucine reduced the ATP-driven proton pumping activity of intact F1F0 to undetectable levels. Roughly 5% of normal activity was observed when glutamine occupied position 219. Surprisingly higher activity, approaching 20% of wild type levels, is seen when histidine replaced glutamic acid 219. The aspartic acid substitution resulted in little loss of enzyme function. Substitution of glutamic acid for histidine 245 results in a reduction to about 45% of normal proton translocation. Construction of the double mutant with substitution of histidine at position 219 and glutamic acid at position 245 yields a complex with better proton translocation than with either mutant separately. The possibility that a functionally important interaction between histidine 245 and glutamic acid 219 of the a subunit may be directly involved in the proton translocation mechanism of F1F0-ATP synthase is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources