Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep;43(9S):S102-S106.
doi: 10.1016/j.joen.2017.09.003.

The Role of Vasculature Engineering in Dental Pulp Regeneration

Affiliations
Review

The Role of Vasculature Engineering in Dental Pulp Regeneration

Waruna Lakmal Dissanayaka et al. J Endod. 2017 Sep.

Abstract

Creating an optimal microenvironment that supports angiogenesis, cell-cell cross talk, cell migration, and differentiation is crucial for pulp/dentin regeneration. It was shown that dental stem cells being seeded onto a scaffold and transplanted in vivo could give rise to a new tissue similar to that of the native pulp. However, the unique structure of the tooth with a pulp space encased within hard dentin allows only a single blood supply from a small apical opening located at the apex of the root canals. Therefore, a further strategy that can address this limitation such as the incorporation of endothelial/endothelial progenitor cells or cells with high angiogenic potential into the transplant is required so that the added cells can contribute to the vascularization within the implant. However, the placement of 2 or more different cell types inside 3-dimensional porous scaffolds is technologically challenging. In contrast to the conventional scaffolding approach, self-assembly of monodispersed cells into 3-dimensional tissue mimics permits true physiological interactions between and among different types of cells without any influence from a secondary material. In this review, we discuss potential strategies that can be used in vasculature engineering in dental pulp regeneration with a specific emphasis on combining prevascularization and scaffold-based or scaffold-free approaches.

Keywords: Angiogenic factors; dental pulp stem cells; microfabrication; prevascularization; vasculogenesis.

PubMed Disclaimer

LinkOut - more resources