Genetic economy in picornaviruses: Foot-and-mouth disease virus replication exploits alternative precursor cleavage pathways
- PMID: 28968463
- PMCID: PMC5638621
- DOI: 10.1371/journal.ppat.1006666
Genetic economy in picornaviruses: Foot-and-mouth disease virus replication exploits alternative precursor cleavage pathways
Abstract
The RNA genomes of picornaviruses are translated into single polyproteins which are subsequently cleaved into structural and non-structural protein products. For genetic economy, proteins and processing intermediates have evolved to perform distinct functions. The picornavirus precursor protein, P3, is cleaved to produce membrane-associated 3A, primer peptide 3B, protease 3Cpro and polymerase 3Dpol. Uniquely, foot-and-mouth disease virus (FMDV) encodes three similar copies of 3B (3B1-3), thus providing a convenient natural system to explore the role(s) of 3B in the processing cascade. Using a replicon system, we confirmed by genetic deletion or functional inactivation that each copy of 3B appears to function independently to prime FMDV RNA replication. However, we also show that deletion of 3B3 prevents replication and that this could be reversed by introducing mutations at the C-terminus of 3B2 that restored the natural sequence at the 3B3-3C cleavage site. In vitro translation studies showed that precursors with 3B3 deleted were rapidly cleaved to produce 3CD but that no polymerase, 3Dpol, was detected. Complementation assays, using distinguishable replicons bearing different inactivating mutations, showed that replicons with mutations within 3Dpol could be recovered by 3Dpol derived from "helper" replicons (incorporating inactivation mutations in all three copies of 3B). However, complementation was not observed when the natural 3B-3C cleavage site was altered in the "helper" replicon, again suggesting that a processing abnormality at this position prevented the production of 3Dpol. When mutations affecting polyprotein processing were introduced into an infectious clone, viable viruses were recovered but these had acquired compensatory mutations in the 3B-3C cleavage site. These mutations were shown to restore the wild-type processing characteristics when analysed in an in vitro processing assay. Overall, this study demonstrates a dual functional role of the small primer peptide 3B3, further highlighting how picornaviruses increase genetic economy.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






References
-
- Capozzo AV, Burke DJ, Fox JW, Bergmann IE, La Torre JL, Grigera PR. Expression of foot and mouth disease virus non-structural polypeptide 3ABC induces histone H3 cleavage in BHK21 cells. Virus research. 2002;90(1–2):91–9. Epub 2002/11/30. - PubMed
-
- Fujita K, Krishnakumar SS, Franco D, Paul AV, London E, Wimmer E. Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry. 2007;46(17):5185–99. Epub 2007/04/10. doi: 10.1021/bi6024758 - DOI - PMC - PubMed
-
- Lama J, Paul AV, Harris KS, Wimmer E. Properties of Purified Recombinant Poliovirus Protein 3ab as Substrate for Viral Proteinases and as Cofactor for Rna-Polymerase 3d(Pol). Journal of Biological Chemistry. 1994;269(1):66–70. - PubMed
-
- Liu Y, Franco D, Paul AV, Wimmer E. Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in RNA replication in the context of its precursor protein, 3AB. Journal of virology. 2007;81(11):5669–84. doi: 10.1128/JVI.02350-06 - DOI - PMC - PubMed
-
- Sariya L, Thangthumniyom N, Wajjwalku W, Chumsing W, Ramasoota P, Lekcharoensuk P. Expression of foot and mouth disease virus nonstructural polyprotein 3ABC with inactive 3C(pro) in Escherichia coli. Protein expression and purification. 2011;80(1):17–21. Epub 2011/08/04. doi: 10.1016/j.pep.2011.07.006 - DOI - PubMed
MeSH terms
Substances
Grants and funding
- BBS/E/I/00007034/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- G0901002/MRC_/Medical Research Council/United Kingdom
- BB/E010709/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- BBS/E/I/00007039/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- BB/H007849/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
Other Literature Sources