Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 29;8(38):63574-63586.
doi: 10.18632/oncotarget.18862. eCollection 2017 Sep 8.

Similar outcomes after haploidentical transplantation with post-transplant cyclophosphamide versus HLA-matched transplantation: a meta-analysis of case-control studies

Affiliations

Similar outcomes after haploidentical transplantation with post-transplant cyclophosphamide versus HLA-matched transplantation: a meta-analysis of case-control studies

Zhenyang Gu et al. Oncotarget. .

Abstract

Background: Outcomes of haploidentical hematopoietic cell transplantation (haplo-HCT) with post-transplant cyclophosphamide (PT-Cy) have greatly improved. It remains unknown whether haplo-HCT with PT-Cy was associated with poor outcomes when compared with HLA-matched HCT. To address this issue, we performed a meta-analysis to compare outcomes of haplo-HCT with PT-Cy with those of HLA-matched HCT.

Methods: A systematic search for case-control studies were performed in PubMed, Embase and Cochrane Library databases. Using a random model, the risk ratios (RRs) and 95% confidence intervals (95% CI) were pooled for the final analysis.

Results: Nine case-control studies including 2258 patients (827 patients in the haplo-HCT with PT-Cy group, 748 controls from HLA-matched related donors (MRD), and 683 controls from HLA-matched unrelated donors (MUD)) met the inclusion criteria. No differences were found between haplo-HCT with PT-Cy and HLA-matched HCT with regard to acute graft-versus-host-disease (GVHD), non-relapse mortality, relapse, progression free survival and overall survival. However, haplo-HCT with PT-Cy was found to be associated with a lower incidence of moderate to severe chronic GVHD (Haplo vs MRD: RR=0.54; 95% CI=0.39-0.75; Haplo vs MUD: RR=0.70; 95% CI=0.56-0.88).

Conclusions: The results of this meta-analysis suggest that haplo-HCT with PT-Cy can achieve comparable outcomes with those of HLA-matched HCT. Haploidentical donors can be a feasible and valid alternative when conventional HLA-matched donors are unavailable.

Keywords: HLA-matched; haploidentical; hematopoietic cell transplantation; post-transplant cyclophosphamide; similar outcomes.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare that they have no competing interests

Figures

Figure 1
Figure 1. Flow chart of the systematic search used in this study
MRD: HLA-matched related donors, MUD: HLA-matched unrelated donors, EBMT: European Group for Blood and Marrow Transplantation, IBMTR: the International Bone Marrow Transplant Registry (IBMTR) databases.
Figure 2
Figure 2. Forest plot and meta-analysis of the approximate 100-day incidence of Grade II to IV aGVHD
The incidence rates were similar between halo-HCT with PT-Cy and HLA-matched HCT. Haplo versus MRD (A), Haplo versus MUD (B). aGVHD: acute graft-versus-host disease, HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.
Figure 3
Figure 3. Forest plot and meta-analysis of the approximate 100-day incidence of Grade III to IV aGVHD
The incidence rates were similar between haplo-HCT with PT-Cy and HLA-matched HCT. Haplo versus MRD (A), Haplo versus MUD (B). aGVHD: acute graft-versus-host disease, HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.
Figure 4
Figure 4. Forest plot and meta-analysis of the approximate 2-year incidence of moderate to severe cGVHD
The incidence rate after haplo-HCT with PT-Cy was significantly lower than that of HLA-matched HCT. Haplo versus MRD (A), Haplo versus MUD (B). cGVHD: chronic graft-versus-host disease, HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.
Figure 5
Figure 5. Forest plot and meta-analysis of the approximate 2-year non-relapse mortality
It was similar between haplo-HCT with PT-Cy and HLA-matched HCT. Haplo versus MRD (A), Haplo versus MUD (B). HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.
Figure 6
Figure 6. Forest plot and meta-analysis of the approximate 2-year relapse rate
It was similar between haplo-HCT with PT-Cy and HLA-matched HCT. Haplo versus MRD (A), Haplo versus MUD (B). HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.
Figure 7
Figure 7. Forest plot and meta-analysis of the approximate 3-year progression free survival. It was similar between haplo-HCT with PT-Cy and HLA-matched HCT
Haplo versus MRD (A), Haplo versus MUD (B). HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.
Figure 8
Figure 8. Forest plot and meta-analysis of the approximate 3-year overall survival
It was similar between haplo-HCT with PT-Cy and HLA-matched HCT. Haplo versus MRD (A), Haplo versus MUD (B). HCT: hematopoietic cell transplantation, PT-Cy: post-transplant cyclophosphamide, haplo: HLA-haploidentical, MRD: HLA-matched related donor, MUD: HLA-matched unrelated donor, RR: risk ratio, CI: confidence interval.

References

    1. Beatty PG, Clift RA, Mickelson EM, Nisperos BB, Flournoy N, Martin PJ, Sanders JE, Stewart P, Buckner CD, Storb R, Thomas D, Hansen JA. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313:765–771. - PubMed
    1. Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH, Bradley BA, Casper JT, Flomenberg N, Gajewski JL, Gluckman E, Henslee-Downey PJ, Hows JM, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15:1767–1777. - PubMed
    1. Henslee-Downey PJ, Parrish RS, MacDonald JS, Romond EH, Marciniak E, Coffey C, Ciocci G, Thompson JS. Combined in vitro and in vivo T lymphocyte depletion for the control of graft-versus-host disease following haploidentical marrow transplant. Transplantation. 1996;61:738–745. - PubMed
    1. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, Ruggeri L, Barbabietola G, Aristei C, Latini P, Reisner Y, Martelli MF. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–1193. - PubMed
    1. Lu DP, Dong L, Wu T, Huang XJ, Zhang MJ, Han W, Chen H, Liu DH, Gao ZY, Chen YH, Xu LP, Zhang YC, Ren HY, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107:3065–3073. - PubMed