Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov 8;61(5):517-527.
doi: 10.1042/EBC20170030. Print 2017 Nov 8.

Protein degradation: a validated therapeutic strategy with exciting prospects

Affiliations
Review

Protein degradation: a validated therapeutic strategy with exciting prospects

Honorine Lebraud et al. Essays Biochem. .

Abstract

In a time of unprecedented challenges in developing potent, selective and well-tolerated protein inhibitors as therapeutics, drug hunters are increasingly seeking alternative modalities to modulate pharmacological targets. Selective inhibitors are achievable for only a fraction of the proteome, and are not guaranteed to elicit the desired response in patients, especially when pursuing targets identified through genetic knockdown. Targeted protein degradation holds the potential to expand the range of proteins that can be effectively modulated. Drugs inducing protein degradation through misfolding or by modulating cereblon (CRBN) substrate recognition are already approved for treatment of cancer patients. The last decade has seen the development of proteolysis targeting chimeras (PROTACs), small molecules that elicit proteasomal degradation by causing protein polyubiquitination. These have been used to degrade a range of disease-relevant proteins in cells, and some show promising efficacy in preclinical animal models, although their clinical efficacy and tolerability is yet to be proven. This review introduces current strategies for protein degradation with an emphasis on PROTACs and the role of click chemistry in PROTAC research through the formation of libraries of preclicked PROTACs or in-cell click-formed PROTACs (CLIPTACs).

Keywords: PROTAC; Protein degradation; proteasomes; ubiquitin ligases; ubiquitins.

PubMed Disclaimer

MeSH terms

LinkOut - more resources