Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep 30;8(10):250.
doi: 10.3390/genes8100250.

Effects of Antidiabetic Drugs on Gut Microbiota Composition

Affiliations
Review

Effects of Antidiabetic Drugs on Gut Microbiota Composition

Sophie A Montandon et al. Genes (Basel). .

Abstract

Gut microbiota forms a catalog of about 1000 bacterial species; which mainly belong to the Firmicutes and Bacteroidetes phyla. Microbial genes are essential for key metabolic processes; such as the biosynthesis of short-chain fatty acids (SCFA); amino acids; bile acids or vitamins. It is becoming clear that gut microbiota is playing a prevalent role in pathologies such as metabolic syndrome; type 2 diabetes (T2D); inflammatory and bowel diseases. Obesity and related diseases; notably type 2 diabetes, induce gut dysbiosis. In this review; we aim to cover the current knowledge about the effects of antidiabetic drugs on gut microbiota diversity and composition as well as the potential beneficial effects mediated by specific taxa. Metformin is the first-line treatment against T2D. In addition to its glucose-lowering and insulin sensitizing effects, metformin promotes SCFA-producing and mucin-degrading bacteria. Other antidiabetic drugs discussed in this review show positive effects on dysbiosis; but without any consensus specifically regarding the Firmicutes to Bacteroidetes ratio. Thus, beneficial effects might be mediated by specific taxa.

Keywords: antidiabetic drugs; gut microbiota; incretins; metformin; type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Similar articles

Cited by

References

    1. Clarke G., Stilling R.M., Kennedy P.J., Stanton C., Cryan J.F., Dinan T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 2014;28:1221–1238. doi: 10.1210/me.2014-1108. - DOI - PMC - PubMed
    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053. - DOI - PMC - PubMed
    1. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591. - DOI - PMC - PubMed
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540. - DOI - PMC - PubMed
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. - DOI - PMC - PubMed