Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr-Jun;29(2):231-237.
doi: 10.5935/0103-507X.20170032.

Does the use of high PEEP levels prevent ventilator-induced lung injury?

[Article in Portuguese, English]
Affiliations
Review

Does the use of high PEEP levels prevent ventilator-induced lung injury?

[Article in Portuguese, English]
Guillermo Bugedo et al. Rev Bras Ter Intensiva. 2017 Apr-Jun.

Abstract

Overdistention and intratidal alveolar recruitment have been advocated as the main physical mechanisms responsible for ventilator-induced lung injury. Limiting tidal volume has a demonstrated survival benefit in patients with acute respiratory distress syndrome and is recognized as the cornerstone of protective ventilation. In contrast, the use of high positive end-expiratory pressure levels in clinical trials has yielded conflicting results and remains controversial. In the present review, we will discuss the benefits and limitations of the open lung approach and will discuss some recent experimental and clinical trials on the use of high versus low/moderate positive end-expiratory pressure levels. We will also distinguish dynamic (tidal volume) from static strain (positive end-expiratory pressure and mean airway pressure) and will discuss their roles in inducing ventilator-induced lung injury. High positive end-expiratory pressure strategies clearly decrease refractory hypoxemia in patients with acute respiratory distress syndrome, but they also increase static strain, which in turn may harm patients, especially those with lower levels of lung recruitability. In patients with severe respiratory failure, titrating positive end-expiratory pressure against the severity of hypoxemia, or providing it in a decremental fashion after a recruitment maneuver, is recommended. If high plateau, driving or mean airway pressures are observed, prone positioning or ultraprotective ventilation may be indicated to improve oxygenation without additional stress and strain in the lung.

A distensão excessiva e o recrutamento alveolar pelo volume corrente foram defendidos como os principais mecanismos físicos responsáveis pela lesão pulmonar induzida pelo ventilador. A limitação do volume corrente demonstrou benefícios quanto à sobrevivência em pacientes com síndrome da angústia respiratória aguda e é reconhecida como a pedra fundamental da ventilação protetora. Em contraste, o uso de elevados níveis de pressão positiva expiratória final em estudos clínicos gerou resultados conflitantes e ainda é um assunto controvertido. Nesta revisão, discutimos os benefícios e as limitações da abordagem de pulmão aberto, e debatemos alguns recentes estudos experimentais e clínicos, referentes ao uso de níveis baixos e moderados de pressão positiva expiratória final. Também distinguimos o estiramento dinâmico (volume corrente) do estático (pressão expiratória final positiva e pressão média nas vias aéreas) e discutimos seus papéis na indução da lesão pulmonar induzida pela ventilação. As estratégias com elevada pressão positiva expiratória final claramente diminuem a hipoxemia refratária em pacientes com síndrome da angústia respiratória aguda, porém também aumentam o estiramento estático, que, por sua vez, pode ser lesiva aos pacientes, especialmente para aqueles com nível mais baixo de recrutabilidade pulmonar. Em pacientes com insuficiência respiratória grave, recomenda-se a titulação da pressão positiva expiratória final contra a gravidade da hipoxemia, ou sua aplicação de uma forma decrescente após manobra de recrutamento. Caso sejam observadas elevadas pressões de platô, driving pressure ou pressão média nas vias aéreas, a posição prona ou ventilação ultraprotetora podem ser indicadas para melhora da oxigenação, sem estresse adicional e estiramento dos pulmões.

A distensão excessiva e o recrutamento alveolar pelo volume corrente foram defendidos como os principais mecanismos físicos responsáveis pela lesão pulmonar induzida pelo ventilador. A limitação do volume corrente demonstrou benefícios quanto à sobrevivência em pacientes com síndrome da angústia respiratória aguda e é reconhecida como a pedra fundamental da ventilação protetora. Em contraste, o uso de elevados níveis de pressão positiva expiratória final em estudos clínicos gerou resultados conflitantes e ainda é um assunto controvertido. Nesta revisão, discutimos os benefícios e as limitações da abordagem de pulmão aberto, e debatemos alguns recentes estudos experimentais e clínicos, referentes ao uso de níveis baixos e moderados de pressão positiva expiratória final. Também distinguimos o estiramento dinâmico (volume corrente) do estático (pressão expiratória final positiva e pressão média nas vias aéreas) e discutimos seus papéis na indução da lesão pulmonar induzida pela ventilação. As estratégias com elevada pressão positiva expiratória final claramente diminuem a hipoxemia refratária em pacientes com síndrome da angústia respiratória aguda, porém também aumentam o estiramento estático, que, por sua vez, pode ser lesiva aos pacientes, especialmente para aqueles com nível mais baixo de recrutabilidade pulmonar. Em pacientes com insuficiência respiratória grave, recomenda-se a titulação da pressão positiva expiratória final contra a gravidade da hipoxemia, ou sua aplicação de uma forma decrescente após manobra de recrutamento. Caso sejam observadas elevadas pressões de platô, driving pressure ou pressão média nas vias aéreas, a posição prona ou ventilação ultraprotetora podem ser indicadas para melhora da oxigenação, sem estresse adicional e estiramento dos pulmões.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: None.

Figures

Figure 1
Figure 1
Mean airway pressures in Oscillate (squares) and Oscar (circles) studies. Data are from tables 3S and 4S (Oscillate) and from table 2 (Oscar). In the Oscar trial, mean airway pressures in the control arm were not given and were calculated as Pmean=PEEP + 1/3(Δ Pplateau-PEEP), considering an inspiratory time from 1:2. HFOV - high-frequency oscillatory ventilation.
Figure 2
Figure 2
Effect of increasing levels of positive end-expiratory pressure on alveolar recruitment, tidal recruitment and derecruitment and static strain. From zero end-expiratory pressure to a positive end-expiratory pressure of 5cmH2O, there was marked recruitment and a decrease in recruitment and derecruitment, which provided a protective effect. Positive end-expiratory pressure levels above 15cmH2O should be carefully titrated, as the impact on recruitment is less evident and strain may increase.
Figure 3
Figure 3
Effect of different tidal volumes on tidal recruitment and derecruitment, partial pressure of carbon dioxide levels and transpulmonary pressure. A decrease in tidal volume will always induce a decrease in transpulmonary pressure, but a very low tidal volume may increase partial pressure of carbon dioxide and decrease pH. Vt - tidal volume; R/D - tidal recruitment and derecruitment; PaCO2 - partial pressure of carbon dioxide; PL - transpulmonary pressure.

Similar articles

Cited by

References

    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–2136. Erratum in N Engl J Med. 2014;370(17):1668-9. - PubMed
    1. Acute Respiratory Distress Syndrome Network. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. - PubMed
    1. Bein T, Grasso S, Moerer O, Quintel M, Guerin C, Deja M. The standard of care of patients with ARDS ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42(5):699–711. - PMC - PubMed
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–354. - PubMed
    1. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome a randomized controlled trial. JAMA. 1999;282(1):54–61. - PubMed

MeSH terms