Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar;93(3):429-438.
doi: 10.1111/cge.13150. Epub 2018 Jan 25.

Digenic inheritance and genetic modifiers

Affiliations
Review

Digenic inheritance and genetic modifiers

C Deltas. Clin Genet. 2018 Mar.

Abstract

Digenic inheritance (DI) concerns pathologies with the simplest form of multigenic etiology, implicating more than 1 gene (and perhaps the environment). True DI is when biallelic or even triallelic mutations in 2 distinct genes, in cis or in trans, are necessary and sufficient to cause pathology with a defined diagnosis. In true DI, a heterozygous mutation in each of 2 genes alone is not associated with a recognizable phenotype. Well-documented diseases with true DI are so far rare and follow non-Mendelian inheritance. DI is also encountered when by serendipity, pathogenic mutations responsible for 2 distinct disease entities are co-inherited, leading to a mixed phenotype. Also, we can consider many true monogenic Mendelian conditions, which show impressively broad spectrum of phenotypes due to pseudo-DI, as a result of co-inheriting genetic modifiers (GMs). I am herewith reviewing examples of GM and embark on presenting some recent notable examples of true DI, with wider discussion of the literature. Undeniably, the advent of high throughput sequencing is bound to unravel more patients suffering with true DI conditions and elucidate many important GM, thus impacting precision medicine.

Keywords: DNA variants; co-inheritance; digenic inheritance; genetic alpha effect; genetic modifiers; high throughput sequencing; phenotypic heterogeneity; polymorphisms; pseudo-digenic inheritance.

PubMed Disclaimer

Publication types

LinkOut - more resources