Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 22;8(37):61226-61238.
doi: 10.18632/oncotarget.18051. eCollection 2017 Sep 22.

Andrographolide inhibits arrhythmias and is cardioprotective in rabbits

Affiliations

Andrographolide inhibits arrhythmias and is cardioprotective in rabbits

Mengliu Zeng et al. Oncotarget. .

Abstract

Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na+ (INa), Ca2+ (ICaL), and K+ (IK1, IKr, Ito and IKur) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo. We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 μM) and high calcium ([Ca2+]o=3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited INa and ICaL, but had no effect on Ito, IKur, IK1, or IKr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo, and these effects result from INa and ICaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.

Keywords: L-type calcium current; action potential; andrographolide; arrhythmia; sodium current.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Effects of andrographolide (Andro) on APs, DADs, and DAD-induced TAs
Typical photomicrographs of a single LVM (left) or LAM (right) cell under 40× light microscope (A). Effects of andrographolide (5 or 10 μM) on APs recorded from rabbit LVMs (left) and LAMs (right) (B). Effect of andrographolide (5 or 10 μM) on APs stimulated at 0.5, 1, or 2 Hz (C). APs from 30 consecutive sweeps were averaged. The data of APD90 recorded at different stimulation frequencies are shown; andrographolide shortened APD90 and attenuated its RD in a concentration-dependent manner in LVMs (D). Data are shown as means±SD (n=9, #p<0.01 vs control, $p<0.01 vs 5 μM andrographolide). Andrographolide abolished ISO (1 μM) and high calcium ([Ca2+]o=3.6 mM)-induced DADs and TAs in LVMs (E). Arrows indicate depolarizing pulse.
Figure 2
Figure 2. Andrographolide inhibited INa in a concentration dependent manner in LVMs and LAMs
Representative whole-cell recordings of INa in LVMs (A) and LAMs (B) with or without 1, 5, 10, or 20 μM andrographolide. Current voltage relationships for INa in LVMs (C) and LAMs (D) Data are shown as means±SD (ventricle, n=10; atrium, n=8). #p<0.01 vs control, %p<0.01 vs 1 μM, $p<0.01 vs 5 μM, &p<0.01 vs 10 μM andrographolide. Representative INa recordings before (E) and after (F) andrographolide treatment using the inactivation protocol in the inset. Steady-state activation and inactivation curves for INa in LVMs (G) and LAMs (H) with or without 20 μM andrographolide. Lines represent data fit to a Boltzmann distribution function. Dose-reaction relationship between andrographolide and percent inhibition of INa (ventricle, n=10; atrium, n=10) (I)+p>0.05 vs ventricle.
Figure 3
Figure 3. Andrographolide inhibition of ICaL is reversible
ICaL time course after membrane rupture in LVMs (A). Histograms of ICaL current densities for control, 10 μM andrographolide, and washout (n=8) (B). #p<0.01 vs control, &p<0.01 vs 10 μM andrographolide). Data are shown as means±SD. Effects of andrographolide on ICaL are reversible, and nifedipine (10 μM) blocked ICaL completely in LVMs (C).
Figure 4
Figure 4. Andrographolide inhibited ICaL in a concentration-dependent manner in LVMs and LAMs
Representative whole-cell recordings of ICaL in LVMs (A) and LAMs (B) with or without 1, 5, 10, or 20 μM andrographolide. Current voltage relationships for ICaL in LVMs (C) and LAMs (D) Data are shown as means±SD (ventricle, n=14; atrium, n=15). #p<0.01 vs control, % p<0.01 vs 1 μM, $ p<0.01 vs 5 μM, &p<0.01 vs 10 μM andrographolide. Representative ICaL recordings before (E) and after (F) andrographolide treatment using the inactivation protocol in the inset.Steady-state activation and inactivation curves for ICaL in LVMs (G) and LAMs (H) with or without 20 μM andrographolide. Lines represent the data fit to a Boltzmann distribution function. Dose-reaction relationship between andrographolide and percent inhibition of ICaL (ventricle, n=8; atrium, n=10) (I) +p>0.05 vs ventricle.
Figure 5
Figure 5. Effects of andrographolide on IK1, IKr, Ito, and IKur
IK1 (A) and its I-V relationship (C) in LVMs beforeand after andrographolide treatment. Data are shown as means±SD (n=14). Typical IKr current traces from a single LVM cell (B) and its I-V relationship (D) before and after andrographolide treatment (n=15). Representative Ito current recording (E) and its I-V relationship (F) in LAMs before and after andrographolide treatment (n=15). IKur I-V relationship in LAMs before and after application of andrographolide (n=12) (G). *p>0.05 vs control, @p>0.05 vs 10 μM andrographolide, !p>0.05 vs 20 μM andrographolide.
Figure 6
Figure 6. Effects of andrographolide on aconitine-induced arrhythmias
Histogram of the aconitine-induced arrhythmia time threshold (NS: n=10; Andro: VPC, n=10; VT, n=7) (A). Histogram of the aconitine threshold (NS: n=10; Andro: VPC, n=10; VT, n=7) (B). VPC and VT appeared in all 10 NS group rabbits, and in 10 and 7 Andro group rabbits, respectively. Rabbit mortality before and after andrographolide treatment (NS: n=10, Andro: n=10) (C). Incidence of aconitine-induced multiple ventricular arrhythmias in the two groups (D). VPC was triggered successfully in all animals, but VT and VF incidences were reduced in the Andro group. Time-dosage threshold curve of various types of ventricular arrhythmias (E). VPC, VT and VF were observed in all 10 NS group rabbits, and in 10, 7, and 1 of 10 Andro group rabbits, respectively. Typical ECG tracings showing various types of ventricular arrhythmias before (Fa) and after aconitine treatment (2 μg/kg/min) (Fb–d) VPC, VT, and VF began to appear at 17, 23, and 47 min (F). Typical ECG tracings before (Ga) and after andrographolide (10 mg/kg) and aconitine (2 μg/kg/min) treatment (Gb–d). The times of the four ECG tracings in (G) were consistent with those in (F). After andrographolide treatment, VPC appeared at 47 min, and arrhythmia did not appear at either 17 or 23 min. *p<0.01 vs NS. NS: normal saline; VPC: ventricular premature contraction; VT: ventricular tachycardia; VF: ventricular fibrillation.

Similar articles

Cited by

References

    1. Ren J, Liu Z, Wang Q, Giles J, Greenberg J, Sheibani N, Kent KC, Liu B. Andrographolide ameliorates abdominal aortic aneurysm progression by inhibiting inflammatory cell infiltration through downregulation of cytokine and integrin expression. J Pharmacol Exp Ther. 2016;356:137–147. - PMC - PubMed
    1. Kishore V, Yarla NS, Bishayee A, Putta S, Malla R, Neelapu NR, Challa S, Das S, Shiralgi Y, Hegde G, Dhananjaya BL. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr Top Med Chem. 2017;17:845–857. - PubMed
    1. Wong SY, Tan MG, Wong PT, Herr DR, Lai MK. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK. J Neuroinflammation. 2016;13:251. - PMC - PubMed
    1. Xu F, Wu H, Zhang K, Lv P, Zheng L, Zhao J. Proneurogenic effects of andrographolide on RSC96 Schwann cells in vitro. Mol Med Rep. 2016;14:3573–3580. - PMC - PubMed
    1. Awang K, Abdullah NH, Hadi AH, Fong YS. Cardiovascular activity of labdane diterpenes from Andrographis paniculata in isolated rat hearts. J Biomed Biotechnol. 2012;2012:876458. - PMC - PubMed

LinkOut - more resources