Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 27;8(37):61551-61560.
doi: 10.18632/oncotarget.18623. eCollection 2017 Sep 22.

The 2-aminoethoxydiphenyl borate analog, DPB161 blocks store-operated Ca2+ entry in acutely dissociated rat submandibular cells

Affiliations

The 2-aminoethoxydiphenyl borate analog, DPB161 blocks store-operated Ca2+ entry in acutely dissociated rat submandibular cells

Kunkun Xia et al. Oncotarget. .

Abstract

Cellular Ca2+ signals play a critical role in cell physiology and pathology. In most non-excitable cells, store-operated Ca2+ entry (SOCE) is an important mechanism by which intracellular Ca2+ signaling is regulated. However, few drugs can selectively modulate SOCE. 2-Aminoethoxydiphenyl borate (2APB) and its analogs (DPB162 and DPB163) have been reported to inhibit SOCE. Here, we examined the effects of another 2-APB analog, DPB161 on SOCE in acutely-isolated rat submandibular cells. Both patch-clamp recordings and Ca2+ imaging showed that upon removal of extracellular Ca2+ ([Ca2+]o=0), rat submandibular cells were unable to maintain ACh-induced Ca2+ oscillations, but restoration of [Ca2+]o to refill Ca2+ stores enable recovery of these Ca2+ oscillations. However, addition of 50 μM DPB161 with [Ca2+]o to extracellular solution prevented the refilling of Ca2+ store. Fura-2 Ca2+ imaging showed that DPB161 inhibited SOCE in a concentration-dependent manner. After depleting Ca2+ stores by thapsigargin treatment, bath perfusion of 1 mM Ca2+ induced [Ca2+]i elevation in a manner that was prevented by DPB161. Collectively, these results show that the 2-APB analog DPB161 blocks SOCE in rat submandibular cells, suggesting that this compound can be developed as a pharmacological tool for the study of SOCE function and as a new therapeutic agent for treating SOCE-associated disorders.

Keywords: 2-aminoethoxydiphenyl borate; Ca2+ oscillations; DPB161; rat submandibular cells; store-operated Ca2+ entry (SOCE).

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Chemical structure of DPB-161
Figure 2
Figure 2. Comparison of ACh-induced Ca2+ oscillations between pancreatic acinar cells and submandibular cells using patch-clamp recordings
Under [Ca2+]o = 0 condition, ACh (20 nM) induced a long-lasting Ca2+ oscillatory response in mouse pancreatic acinar cells (A) but induced a short-lasting Ca2+ oscillatory response in rat submandibular cells (B). Typical traces from 6 cells tested are presented in A (mouse pancreatic acinar cells) and B (rat submandibular cells), respectively.
Figure 3
Figure 3. Effects of DPB-161 on [Ca2+]i responses to ACh measured by patch-clamp recordings in rat submandibular cells
(A) Under [Ca2+]o = 0 conditions, bath-application of 20 nM ACh induced Ca2+oscillatory response. Bath-application of 1 mM Ca2+ refills the Ca2+stores through opened SOC channels. (B) Using the same experimental protocol but refilling Ca2+ stores with 1 mM Ca2+ and 50 μM DBP161 prevented the refilling of Ca2+ stores, suggesting that DPB161 blocks SOCE. Typical traces in A and B are presented from 6 submandibular cells tested, respectively.
Figure 4
Figure 4. Effects of DPB-161 on [Ca2+]i responses to ACh measured by Ca2+ imaging in rat submandibular cells
(A) In the presence of extracellular Ca2+, the cell was stimulated with 1 μM ACh (4 min). (B) ACh was applied to the cell in a Ca2+-free solution. (C) Before (1 min) and during stimulation with ACh in the Ca2+-free solution, 50 μM DPB-161 was applied. (D) Before (1 min) and during stimulation with ACh in the Ca2+-containing solution, 50 μM DPB-161 was applied. The representative trace of 11-16 experiments is shown in each panel.
Figure 5
Figure 5. Effects of DPB-161 on Ca2+ store refilling following ACh-induced Ca2+ store depletion in rat submandibular cells
(A) In Ca2+-free solution, the cell was stimulated by 1 μM ACh (4 min). After the first challenge of ACh, a second ACh challenge (4 min) was performed. (B) Between the two ACh challenges, Ca2+-containing solution was applied for 2 min. (C) Before (1 min) and during addition of extracellular Ca2+, 5 μM DPB-161 was applied. (D) Before (1 min) and during addition of extracellular Ca2+, 50 μM DPB-161 was applied. The representative trace of 5-19 experiments is shown in each panel. (E) Concentration-response relationships for DPB-161 inhibition of store-operated Ca2+ entry. Relative sizes of the second ACh responses to the first ones are shown, measured by the area under the curve. Values are means of 5, 8, 8, and 15 cells tested for 0, 5, 20 and 50 μM DPB-161, respectively. Vertical bars indicate SE. Statistical significance was obtained by one-way ANOVA. *: p < 0.05, **: p < 0.01, ***: p < 0.001.
Figure 6
Figure 6. Effects of DPB-161 on the Ca2+ entry following thapsigargin-induced Ca2+ store depletion in rat submandibular gland acinar cells
(A) In Ca2+-free solution, 1 μM thapsigargin (TG) was first applied (4 min), followed by 1 μM ACh. (B) After TG treatment (4 min), the Ca2+-containing solution was applied (2 min). (C) Before (1 min) and during addition of extracellular Ca2+, 5 μM DPB-161 was applied. (D) Before (1 min) and during addition of extracellular Ca2+, 50 μM DPB-161 was applied. (E) Statistical analysis of 14-21 experiments are shown in panels B, C, D.

Similar articles

References

    1. Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH. Ca2+ oscillations in pancreatic acinar cells: spatiotemporal relationships and functional implications. Cell Calcium. 1993;14:746–57. - PubMed
    1. Petersen OH, Petersen CC, Kasai H. Calcium and hormone action. Annu Rev Physiol. 1994;56:297–319. - PubMed
    1. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315–25. - PubMed
    1. Petersen OH, Tepikin A, Park MK. The endoplasmic reticulum: one continuous or several separate Ca(2+) stores? Trends Neurosci. 2001;24:271–6. - PubMed
    1. Putney JW., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12. - PubMed

LinkOut - more resources