Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 28;8(40):67605-67613.
doi: 10.18632/oncotarget.18754. eCollection 2017 Sep 15.

Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes

Affiliations

Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes

Sha Tao et al. Oncotarget. .

Abstract

Vitamin D deficiency could cause insulin resistance. However, the underlying mechanisms are unclear. The 1α-Hydroxylase ["1α(OH)ase"] is a key enzyme for activate vitamin D3 synthesis. Here, we show that 1α(OH)ase stable knockdown by targeted shRNA led to vitamin D3 depletion in L02 hepatocytes. 1α(OH)ase silence also inhibited insulin-induced downstream signaling (IRS-1, ERK and AKT) transduction and glucose transporter 4 expression. Further, 1α(OH)ase shRNA in L02 hepatocytes led to significant reactive oxygen species production, p53-p21 activation and DNA damages. Such effects were almost completely reversed with co-treatment of n-acetylcysteine, which is an established anti-oxidant. Remarkably, insulin-induced downstream signaling transduction and glucose transporter 4 expression were recovered with n-acetylcysteine co-treatment in 1α(OH)ase-silenced L02 hepatocytes. Together, our results suggest that vitamin D deficiency-induced insulin resistance is possibly caused by oxidative stress in hepatocytes.

Keywords: N-acetylcysteine (NAC); hepatocytes; insulin resistance; oxidative stress; vitamin D.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The listed authors have no conflicts of interest.

Figures

Figure 1
Figure 1. Knockdown of 1α(OH)ase leads to vitamin D3 depletion in L02 hepatocytes
Puromycin-selected stable L02 hepatocytes, expressing shRNA against human 1α-Hydroxylase [“sh-1α(OH)ase-1/-2”] or the scramble control shRNA (“sh-SCR”), were subjected to Western blotting assay (A) and qRT-PCR assay (B) to test 1α(OH)ase expression; Vitamin D3 content in the conditional medium was also analyzed (C). Relative 1α(OH)ase expression (vs. loading control ERK1/2) was quantified (A). Data were expressed as mean ± SD (n=5). * p <0.05 vs. “sh-SCR” cells. Experiments in this and all following figures were repeated three times, and similar results were obtained.
Figure 2
Figure 2. Knockdown of 1α(OH)ase leads to insulin resistance in L02 hepatocytes
Puromycin-selected stable L02 hepatocytes, expressing shRNA against human 1α-Hydroxylase [“sh-1α(OH)ase-1/-2”] or the scramble control shRNA (“sh-SCR”), were treated with insulin (1 μg/mL) for 10 min, expressions of listed proteins were tested by Western blotting assay (A); quantified results summarizing three sets of repeated blot data were also shown (B); expressions of GLUT4 and (β-) tubulin were also tested, results were also quantified (C). Data were expressed as mean ± SD (n=3). * p <0.05 vs. “sh-SCR” cells.
Figure 3
Figure 3. Knockdown of 1α(OH)ase leads to ROS production, p53-p21 activation and DNA damage in L02 hepatocytes
Puromycin-selected stable L02 hepatocytes, expressing shRNA against human 1α-Hydroxylase [“sh-1α(OH)ase-1/-2”] or the scramble control shRNA (“sh-SCR”), were subjected to listed assays to test SOD activity (A), ROS content (DCFH-DA assay) (B), lipid peroxidation level (TBAR assay) (C), p53-p21 signaling (Western blotting assay) (D), and DNA damage (γ-H2AX FACS assay) (E). Data were expressed as mean ± SD (n=5). * p <0.05 vs. “sh-SCR” cells.
Figure 4
Figure 4. N-acetylcysteine blocks ROS production, p53-p21 activation and DNA damage in 1α(OH)ase-silenced L02 hepatocytes
L02 hepatocytes, infected with shRNA against human 1α-Hydroxylase [“sh-1α(OH)ase-1”], were also exposed to n-acetylcysteine (NAC, 500 μM, renewed daily) or PBS. After 10 days, relative ROS content (DCFH-DA assay) (A), lipid peroxidation level (TBAR assay) (B) p53-p21 signaling (Western blotting assay) (C), and DNA damage (γ-H2AX FACS assay) (D) were tested. Data were expressed as mean ± SD (n=5). * p <0.05 vs. “PBS” cells.
Figure 5
Figure 5. NAC restores insulin sensitivity in 1α(OH)ase-silenced L02 hepatocytes
L02 hepatocytes, infected with shRNA against human 1α-Hydroxylase [“sh-1α(OH)ase-1”], were also exposed to n-acetylcysteine (NAC, 500 μM, renewed daily) or PBS; After 10 days, cells were treated with insulin (1 μg/mL) for 10 min, expressions of listed proteins were tested by Western blotting assay, and results of three sets of repeats were quantified (A); expressions of GLUT4 and tubulin were also tested. (B) Quantified results summarizing three sets of repeated blot data were also shown). Data were expressed as mean ± SD (n=3). * p <0.05 vs. “PBS” cells.

References

    1. Zhao X, Liu X, Wang G, Wen X, Zhang X, Hoffman AR, Li W, Hu JF, Cui J. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells. Oncotarget. 2016;7:51349–51364. doi: 10.18632/oncotarget.9784. - DOI - PMC - PubMed
    1. Kang YH, Cho MH, Kim JY, Kwon MS, Peak JJ, Kang SW, Yoon SY, Song Y. Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget. 2016;7:35577–35591. doi: 10.18632/oncotarget.9590. - DOI - PMC - PubMed
    1. Greenhill C. Metabolism: contribution of B cells to obesity and insulin resistance. Nat Rev Endocrinol. 2013;9:315. - PubMed
    1. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–377. - PMC - PubMed
    1. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:193–205. - PubMed