Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jul 1;48(13):3595-602.

Multifactorial resistance to adriamycin: relationship of DNA repair, glutathione transferase activity, drug efflux, and P-glycoprotein in cloned cell lines of adriamycin-sensitive and -resistant P388 leukemia

Affiliations
  • PMID: 2897875

Multifactorial resistance to adriamycin: relationship of DNA repair, glutathione transferase activity, drug efflux, and P-glycoprotein in cloned cell lines of adriamycin-sensitive and -resistant P388 leukemia

A M Deffie et al. Cancer Res. .

Abstract

Cloned lines of Adriamycin (ADR)-sensitive and -resistant P388 leukemia have been established, including P388/ADR/3 and P388/ADR/7 that are 5- and 10-fold more resistant than the cloned sensitive cell line P388/4 (Cancer Res., 46: 2978, 1986). A time course of ADR-induced DNA double-strand breaks revealed that in sensitive P388/4 cells, evidence of DNA repair was noted 4 h after removal of drug, whereas in resistant clone 3 and 7 cells repair was observed 1 h after drug removal. The earlier onset of DNA repair was statistically significant (p = 0.0154 for clone 3 cells, and p = 0.0009 for clone 7 cells). By contrast, once the repair process was initiated, the rate of repair was similar for all three cell lines. The level of glutathione transferase activity was determined in whole cell extracts. Enzyme activity (mean +/- SE) in sensitive cells was 9.49 +/- 1.00 nmol/min/mg protein, that in resistant clone 3 cells was 13.36 +/- 1.03 nmol/min/mg, and that in clone 7 cells was 13.96 +/- 1.44 nmol/min/mg; the 1.44-fold increase in enzyme activity in resistant cells was statistically significant (p = 0.01). Further evidence of induction of glutathione transferase was provided by Northern blot analysis using a 32P-labeled cDNA for an anionic glutathione transferase, which demonstrated approximately a twofold increase in mRNA in resistant clone 7 cells. Western blot analysis with a polyvalent antibody against anionic glutathione transferase also revealed a proportionate increase in gene product in resistant cells. Dose-survival studies showed that ADR-resistant cells were cross-resistant to actinomycin D, daunorubicin, mitoxantrone, colchicine, and etoposide, but not to the alkylating agent melphalan; this finding provided evidence that these cells are multidrug resistant. Using a cDNA probe for P-glycoprotein, a phenotypic marker for multidrug resistance, Northern blot analysis showed an increase in the steady state level of mRNA of approximately twofold in resistant clone 3 and 7 cells. Southern analysis with the same cDNA probe showed no evidence of gene amplification or rearrangement. Western blot analysis with monoclonal C219 antibody demonstrated a distinct increase in P-glycoprotein in resistant cells. Efflux of Adriamycin as measured by the efflux rate constant was identical in all three cell lines. Furthermore, the metabolic inhibitors azide and dinitrophenol did not augment drug uptake in either sensitive or resistant cells. These findings suggest that despite the increase in P-glycoprotein, an active extrusion pump was not operational in these cells.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources