Divergent Synthesis of Cyclopropane-Containing Lead-Like Compounds, Fragments and Building Blocks through a Cobalt Catalyzed Cyclopropanation of Phenyl Vinyl Sulfide
- PMID: 28983191
- PMCID: PMC5601191
- DOI: 10.1002/ejoc.201701030
Divergent Synthesis of Cyclopropane-Containing Lead-Like Compounds, Fragments and Building Blocks through a Cobalt Catalyzed Cyclopropanation of Phenyl Vinyl Sulfide
Abstract
Cyclopropanes provide important design elements in medicinal chemistry and are widely present in drug compounds. Here we describe a strategy and extensive synthetic studies for the preparation of a diverse collection of cyclopropane-containing lead-like compounds, fragments and building blocks exploiting a single precursor. The bifunctional cyclopropane (E/Z)-ethyl 2-(phenylsulfanyl)-cyclopropane-1-carboxylate was designed to allow derivatization through the ester and sulfide functionalities to topologically varied compounds designed to fit in desirable chemical space for drug discovery. A cobalt-catalyzed cyclopropanation of phenyl vinyl sulfide affords these scaffolds on multigram scale. Divergent, orthogonal derivatization is achieved through hydrolysis, reduction, amidation and oxidation reactions as well as sulfoxide-magnesium exchange/functionalization. The cyclopropyl Grignard reagent formed from sulfoxide exchange is stable at 0 °C for > 2 h, which enables trapping with various electrophiles and Pd-catalyzed Negishi cross-coupling reactions. The library prepared, as well as a further virtual elaboration, is analyzed against parameters of lipophilicity (ALog P), MW and molecular shape by using the LLAMA (Lead-Likeness and Molecular Analysis) software, to illustrate the success in generating lead-like compounds and fragments.
Keywords: Cyclopropanes; Homogeneous catalysis; Molecular diversity; Small ring systems; Sulfoxides.
Figures












References
-
- a) Lovering F., Bikker J. and Humblet C., J. Med. Chem., 2009, 52, 6752–6756; - PubMed
- b) Lovering F., Med. Chem. Commun., 2013, 4, 515–519;
- c) Ritchie T. J. and Macdonald S. J. F., Drug Discovery Today, 2009, 14, 1011–1020; - PubMed
- d) Ishikawa M. and Hashimoto Y., J. Med. Chem., 2011, 54, 1539–1554; - PubMed
- e) Morley A. D., Pugliese A., Birchall K., Bower J., Brennan P., Brown N., Chapman T., Drysdale M., Gilbert I. H., Hoelder S., Jordan A., Ley S. V., Merritt A., Miller D., Swarbrick M. E. and Wyatt P. G., Drug Discovery Today, 2013, 18, 1221–1227; - PubMed
- f) Yang Y., Engkvist O., Llinàs A. and Chen H., J. Med. Chem., 2012, 55, 3667–3677. - PubMed
-
- a) Hung A. W., Ramek A., Wang Y., Kaya T., Wilson J. A., Clemons P. A. and Young D. W., Proc. Natl. Acad. Sci. USA, 2011, 108, 6799–6804; - PMC - PubMed
- b) Galloway W. R. J. D., Isidro‐Llobet A. and Spring D. R., Nat. Commun., 2010, 1, 80; - PubMed
- c) Morton D., Leach S., Cordier C., Warriner S. and Nelson A., Angew. Chem. Int. Ed., 2009, 48, 104–109; - PMC - PubMed
- Angew. Chem., 2009, 121, 110;
- d) Doveston R., Marsden S. and Nelson A., Drug Discovery Today, 2014, 19, 813–819; - PubMed
- e) Schreiber S. L., Science, 2000, 287, 1964–1969; - PubMed
- f) Foley D. J., Nelson A. and Marsden S. P., Angew. Chem. Int. Ed., 2016, 55, 13650–13657; - PMC - PubMed
- Angew. Chem., 2016, 128, 13850.
-
- For recent examples, see: a) Kato N., Comer E., Sakata‐Kato T., Sharma A., Sharma M., Maetani M., Bastien J., Brancucci N. M., Bittker J. A., Corey V., Clarke D., Derbyshire E. R., Dornan G. L., Duffy S., Eckley S., Itoe M. A., Koolen K. M. J., Lewis T. A., Lui P. S., Lukens A. K., Lund E., March S., Meibalan E., Meier B. C., McPhail J. A., Mitasev B., Moss E. L., Sayes M., Van Gessel Y., Wawer M. J., Yoshinaga T., Zeeman A.‐M., Avery V. M., Bhatia S. N., Burke J. E., Catteruccia F., Clardy J. C., Clemons P. A., Dechering K. J., Duvall J. R., Foley M. A., Gusovsky F., Kocken C. H. M., Marti M., Morningstar M. L., Munoz B., Neafsey D. E., Sharma A., Winzeler E. A., Wirth D. F., Scherer C. A. and Schreiber S. L., Nature, 2016, 538, 344–349; - PMC - PubMed
- b) Twigg D. G., Kondo N., Mitchell S. L., Galloway W. R. J. D., Sore H. F., Madin A. and Spring D. R., Angew. Chem. Int. Ed., 2016, 55, 12479–12483; - PMC - PubMed
- Angew. Chem., 2016, 128, 12667;
- c) Gianatassio R., Lopchuk J. M., Wang J., Pan C.‐M., Malins L. R., Prieto L., Brandt T. A., Collins M. R., Gallego G. M., Sach N. W., Spangler J. E., Zhu H., Zhu J. and Baran P. S., Science, 2016, 351, 241–246; - PMC - PubMed
- d) Davis O. A., Croft R. A. and Bull J. A., Chem. Commun., 2015, 51, 15446–15449; - PubMed
- e) Affron D. P., Davis O. A. and Bull J. A., Org. Lett., 2014, 16, 4956–4959. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources