Cellular therapy for traumatic neurological injury
- PMID: 28985200
- DOI: 10.1038/pr.2017.253
Cellular therapy for traumatic neurological injury
Abstract
Neurological injury is the primary lethal mechanism of injury in children, and the primary etiology of long-term disability after trauma. Laboratories and clinical/translational teams have sought to develop stem/progenitor cell therapies to improve recovery in a clinical setting in which there is no significant reparative option. While none of these treatments are currently standard therapeutics, phase IIb clinical trials are underway in both adults and children in severe traumatic brain injury (TBI) and phase I/IIa trials in spinal cord injury. This review will characterize the cell therapy strategies: cell replacement and tissue integration vs. immunomodulation/enhanced endogenous tissue repair. TBI is somewhat different from other central nervous system injuries (spinal cord injury and stroke), in that TBI is a diffuse injury, whereas spinal cord injury and stroke are anatomically discrete. Importantly, this drives cell therapy approaches, as TBI is less apt to be treatable with a local cell replacement intervention. More localized injuries may be more amenable to local approaches and cell replacement to bridge focal gaps. This review focuses on a few reports in the field that highlight areas of progress, but is not intended to be a comprehensive survey of the state of regenerative medicine for neurological injuries.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
