Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May;118(1):125-34.
doi: 10.1530/acta.0.1180125.

Peripheral and hepatic resistance to insulin and hepatic resistance to glucagon in uraemic subjects. Studies at physiologic and supraphysiologic hormone levels

Affiliations

Peripheral and hepatic resistance to insulin and hepatic resistance to glucagon in uraemic subjects. Studies at physiologic and supraphysiologic hormone levels

O Schmitz. Acta Endocrinol (Copenh). 1988 May.

Abstract

To characterize endogenous glucose production in uraemia, nondialyzed uraemic patients and controls were exposed to two major modulating hormones, insulin and glucagon. Nineteen uraemic and 15 healthy subjects underwent either a 2-step (insulin infusion rates: 0.45 and 1.0 mU.kg-1.min-1) or a 3-step (insulin infusion rates: 0.1, 0.2 and 0.3 mU.kg-1.min-1) sequential euglycaemic insulin clamp. Average steady state serum insulin concentrations were almost identical during all five infusion rates in uraemic patients (16, 22, 26, 31 and 66 mU/l) and controls (15, 19, 24, 33 and 68 mU/l). At all steps, insulin infusion was accompanied by significantly lower glucose disposal rates [( 3(-3)H]glucose) in uraemic patients compared with controls (P less than 0.05 or less). Moreover, the restraining potency of insulin on endogenous glucose production was much more prominent in healthy than in uraemic subjects at the lowest three infusion rates (0.6 +/- 1.0 versus 1.4 +/- 0.3 (mean +/- 1 SD), -0.3 +/- 0.7 versus 0.7 +/- 0.3, and -1.1 +/- 0.7 versus 0.2 +/- 0.6 mg.kg-1.min-1; P less than 0.05, P less than 0.01 and P less than 0.01, respectively), implying a shift to the right of the dose-response curve in uraemia. In contrast, basal values were comparable (2.4 +/- 0.3 versus 2.2 +/- 0.6 mg.kg-1.min-1) as the difference vanished at higher infusion rates, i.e. peripheral insulinaemia above approximately equal to 30 mU/l. Another 7 uraemic patients and 7 controls were infused with glucagon at constant rates of 4 or 6 ng.kg-1.min-1, respectively, for 210 min concomitant with somatostatin (125 micrograms/h) and tritiated glucose. The ability of glucagon to elevate plasma glucose was markedly attenuated in uraemic patients compared with controls during the initial 60 min of glucagon exposure. This difference was entirely due to diminished hepatic glucose production (3.5 +/- 0.8 versus 4.8 +/- 1.0 mg.kg-1.min-1; P less than 0.05). In conclusion, in addition to insulin resistance in peripheral tissues, uraemia is also associated with hepatic insulin resistance. Furthermore, glucagon challenge implies impaired early endogenous glucose release in uraemia suggesting a superimposed hepatic resistance to glucagon.

PubMed Disclaimer

Similar articles

Cited by

Publication types