Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 1;8(8):5713-5720.
doi: 10.1039/c7sc00964j. Epub 2017 Jun 12.

Diversity-oriented synthesis of heterocycles and macrocycles by controlled reactions of oxetanes with α-iminocarbenes

Affiliations

Diversity-oriented synthesis of heterocycles and macrocycles by controlled reactions of oxetanes with α-iminocarbenes

Alejandro Guarnieri-Ibáñez et al. Chem Sci. .

Abstract

Using N-sulfonyl triazoles as substrates, compounds as diverse as 2-imino tetrahydrofurans, 13- and 15-membered ring aza-macrocycles can be prepared selectively via formal [1 + 4], [5 + 4 + 4] and [3 + 4 + 4 + 4] condensations of α-imino carbenes and oxetanes under Rh(ii)-catalysis or thermal activation. Spirocyclic N-heterocycles are also accessible by means of Buchwald-Hartwig and Pictet-Spengler cyclizations. By reaction control, substrate selection or further derivatization, a large variety of chemical structures is thus achievable. Finally, using triazoles reacting under thermal activation, interesting mechanistic insight was obtained.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Diversity-oriented synthesis of heterocycles and macrocycles by reaction of N-sulfonyl-1,2,3-triazoles, 1, with cyclic ethers, 3.
Scheme 2
Scheme 2. Reaction scope and isolated yields of 9. (a) Stick view of the crystal structure of 9aA; part of the tolyl group was removed for clarity. (b) Performed over 6 h. (c) Performed with 2 mol% of Rh2(S-TCPTTL)4 over 14 h. (d) Reduction with LiAlH4 at 0 °C over 30 min. (e) Metal-free at 60 °C over 6 h.
Scheme 3
Scheme 3. Reaction scope and yields of 5. (a) Stick view of the crystal structure of 5kA; part of the pBrC6H4 group was removed for clarity. (b) Performed with 2 mol% of Rh2(S-TCPTTL)4.
Scheme 4
Scheme 4. Observed products from the reaction of 1a and 3A. (a) NMR yield determined by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as a reference. (b) Isolated yields.
Scheme 5
Scheme 5. Reactivity of mesyl triazoles and 3,3-dimethyloxetane. Reagents and conditions: (a) stick view of the crystal structure of 6gA. (b) Performed with 2 mol% of Rh2(S-TCPTTL)4 over 7 h.
Scheme 6
Scheme 6. Reactivity of N-sulfonyl-4-phthalimido-1,2,3-triazoles 1p and 1q with 3,3-dimethyloxetane.
Scheme 7
Scheme 7. Rationale for the metal catalyzed pathway.
Scheme 8
Scheme 8. Formation of (Z)-5 and (E)-5. NX2 represents the phthalimido group.
Scheme 9
Scheme 9. Hydrogenation and tosyl group removal conditions.
Scheme 10
Scheme 10. Post-functionalization of 4 or 9. Reagents and conditions: (a) LiAlH4, 25 °C, 1 h. (b) Silica gel, 25 °C, 24 h. (c) HS(CH2)3SH, ClSiMe3, Zn(OTf)2, 25 °C, 1 h. (d) PhSH, K2CO3, CH3CN/DMSO (49 : 1), 50 °C, 2 h. (e) Pd(OAc)2, ±BINAP, K2CO3, toluene, 115 °C, 14 h. (f) (HCHO) n , TFAA, MsOH, 1,2-DCE, 0 °C, 25 min. (g) Stick view of the crystal structures of 7 and 8A; part of the tolyl groups has been removed for clarity.
Fig. 1
Fig. 1. Comparative PMI plot of fifty-three DOS library compounds (red dots), 40 top-selling brand-name drugs (blue triangles) and 60 diverse-natural products (green rhombi).

References

    1. Kolb H. C., Finn M. G., Sharpless K. B. Angew. Chem., Int. Ed. 2001;40:2004–2021. - PubMed
    2. Lewis W. G., Green L. G., Grynszpan F., Radić Z., Carlier P. R., Taylor P., Finn M. G., Sharpless K. B. Angew. Chem., Int. Ed. 2002;41:1053–1057. - PubMed
    3. Amblard F., Cho J. H., Schinazi R. F. Chem. Rev. 2009;109:4207–4220. - PMC - PubMed
    4. Le Droumaguet C., Wang C., Wang Q. Chem. Soc. Rev. 2010;39:1233–1239. - PubMed
    5. Thirumurugan P., Matosiuk D., Jozwiak K. Chem. Rev. 2013;113:4905–4979. - PubMed
    1. Meldal M., Tornøe C. W. Chem. Rev. 2008;108:2952–3015. - PubMed
    2. Hein J. E., Fokin V. V. Chem. Soc. Rev. 2010;39:1302–1315. - PMC - PubMed
    3. Schulze B., Schubert U. S. Chem. Soc. Rev. 2014;43:2522–2571. - PubMed
    1. Harmon R. E., Stanley F., Gupta S. K., Johnson J. J. Org. Chem. 1970;35:3444–3448.
    2. Harmon R. E., Earl R. A., Gupta S. K. J. Chem. Soc. D. 1971:296–297.
    1. Chattopadhyay B., Gevorgyan V. Angew. Chem., Int. Ed. 2012;51:862–872. - PMC - PubMed
    2. Gulevich A. V., Gevorgyan V. Angew. Chem., Int. Ed. 2013;52:1371–1373. - PMC - PubMed
    3. Davies H. M. L., Alford J. S. Chem. Soc. Rev. 2014;43:5151–5162. - PubMed
    4. Anbarasan P., Yadagiri D., Rajasekar S. Synthesis. 2014;46:3004–3023.
    5. Wang Y., Lei X., Tang Y. Synlett. 2015;26:2051–2059.
    6. Jiang Y., Sun R., Tang X.-Y., Shi M. Chem. – Eur. J. 2016;22:17910–17924. - PubMed
    1. For selected Rh-catalyzed reactions of triazoles, see the following articles on C–H, C–O, C–S, N–H or O–H bond insertions:

    2. Chuprakov S., Malik J. A., Zibinsky M., Fokin V. V. J. Am. Chem. Soc. 2011;133:10352–10355. - PMC - PubMed
    3. Yadagiri D., Anbarasan P. Chem. – Eur. J. 2013;19:15115–15119. - PubMed
    4. Fu J., Shen H., Chang Y., Li C., Gong J., Yang Z. Chem. – Eur. J. 2014;20:12881–12888. - PubMed
    5. Miura T., Tanaka T., Matsumoto K., Murakami M. Chem. – Eur. J. 2014;20:16078–16082. - PubMed
    6. Jeon H. J., Jung D. J., Kim J. H., Kim Y., Bouffard J., Lee S.-g. J. Org. Chem. 2014;79:9865–9871. - PubMed
    7. Miura T., Fujimoto Y., Funakoshi Y., Murakami M. Angew. Chem., Int. Ed. 2015;54:9967–9970. - PubMed
    8. Lindsay V. N. G., Viart H. M. F., Sarpong R. J. Am. Chem. Soc. 2015;137:8368–8371. - PubMed
    9. Shen M.-H., Pan Y.-P., Jia Z.-H., Ren X.-T., Zhang P., Xu H.-D. Org. Biomol. Chem. 2015;13:4851–4854. - PubMed
    10. Li L., Xia X.-H., Wang Y., Bora P. P., Kang Q. Adv. Synth. Catal. 2015;357:2089–2097.
    11. Ma X., Wu F., Yi X., Wang H., Chen W. Chem. Commun. 2015;51:6862–6865. - PubMed
    12. Lee D. J., Yoo E. J. Org. Lett. 2015;17:1830–1833. - PubMed
    13. Shi Y., Yu X., Li C.-Y. Eur. J. Org. Chem. 2015;2015:6429–6433.
    14. Senoo M., Furukawa A., Hata T., Urabe H. Chem. – Eur. J. 2016;22:890–895. - PubMed
    15. Kubiak R. W., Mighion J. D., Wilkerson-Hill S. M., Alford J. S., Yoshidomi T., Davies H. M. L. Org. Lett. 2016;18:3118–3121. - PMC - PubMed
    16. Miura T., Nakamuro T., Miyakawa S., Murakami M. Angew. Chem., Int. Ed. 2016;55:8732–8735. - PubMed
    17. Chuprakov S., Kwok S. W., Zhang L., Lercher L., Fokin V. V. J. Am. Chem. Soc. 2009;131:18034–18035. - PMC - PubMed
    18. Zibinsky M., Fokin V. V. Org. Lett. 2011;13:4870–4872. - PMC - PubMed
    19. Miura T., Nakamuro T., Liang C.-J., Murakami M. J. Am. Chem. Soc. 2014;136:15905–15908. - PubMed
    20. Rajagopal B., Chou C.-H., Chung C.-C., Lin P.-C. Org. Lett. 2014;16:3752–3755. - PubMed
    21. Yadagiri D., Anbarasan P. Org. Lett. 2014;16:2510–2513. - PubMed
    22. Shin S., Park Y., Kim C.-E., Son J.-Y., Lee P. H. J. Org. Chem. 2015;80:5859–5869. - PubMed
    23. Seo B., Jeon W. H., Kim J., Kim S., Lee P. H. J. Org. Chem. 2015;80:722–732. - PubMed
    24. Tang X.-Y., Zhang Y.-S., He L., Wei Y., Shi M. Chem. Commun. 2015;51:133–136. - PubMed
    25. Meng J., Ding X., Yu X., Deng W.-P. Tetrahedron. 2016;72:176–183.
    26. Chuprakov S., Hwang F. W., Gevorgyan V. Angew. Chem., Int. Ed. 2007;46:4757–4759. - PMC - PubMed
    27. Schultz E. E., Sarpong R. J. Am. Chem. Soc. 2013;135:4696–4699. - PubMed
    28. Spangler J. E., Davies H. M. L. J. Am. Chem. Soc. 2013;135:6802–6805. - PubMed
    29. Shen H., Fu J., Gong J., Yang Z. Org. Lett. 2014;16:5588–5591. - PubMed
    30. Jung D. J., Jeon H. J., Lee J. H., Lee S.-g. Org. Lett. 2015;17:3498–3501. - PubMed
    31. Ding H., Hong S., Zhang N. Tetrahedron Lett. 2015;56:507–510.
    32. Lee E., Ryu T., Shin E., Son J.-Y., Choi W., Lee P. H. Org. Lett. 2015;17:2470–2473. - PubMed
    33. Miura T., Funakoshi Y., Fujimoto Y., Nakahashi J., Murakami M. Org. Lett. 2015;17:2454–2457. - PubMed
    34. He J., Man Z., Shi Y., Li C.-Y. J. Org. Chem. 2015;80:4816–4823. - PubMed
    35. Zhang W.-B., Xiu S.-D., Li C.-Y. Org. Chem. Front. 2015;2:47–50.
    36. Lei X., Li L., He Y.-P., Tang Y. Org. Lett. 2015;17:5224–5227. - PubMed
    37. Kim S., Kim J. E., Lee J., Lee P. H. Adv. Synth. Catal. 2015;357:3707–3717.
    38. He J., Shi Y., Cheng W., Man Z., Yang D., Li C.-Y. Angew. Chem., Int. Ed. 2016;55:4557–4561. - PubMed
    39. Yadagiri D., Reddy A. C. S., Anbarasan P. Chem. Sci. 2016;7:5934. - PMC - PubMed
    40. Chen W., Bai Y.-L., Luo Y.-C., Xu P.-F. Org. Lett. 2017;19:364–367. - PubMed
    41. Jung D. J., Jeon H. J., Kim J. H., Kim Y., Lee S.-g. Org. Lett. 2014;16:2208–2211. - PubMed
    42. Xing Y., Sheng G., Wang J., Lu P., Wang Y. Org. Lett. 2014;16:1244–1247. - PubMed
    43. Ran R.-Q., Xiu S.-D., Li C.-Y. Org. Lett. 2014;16:6394–6396. - PubMed
    44. Zhang Y.-S., Tang X.-Y., Shi M. Chem. Commun. 2014;50:15971–15974. - PubMed
    45. Yang Y., Zhou M.-B., Ouyang X.-H., Pi R., Song R.-J., Li J.-H. Angew. Chem., Int. Ed. 2015;54:6595–6599. - PubMed
    46. Kim C.-E., Park Y., Park S., Lee P. H. Adv. Synth. Catal. 2015;357:210–220.
    47. Lee D. J., Ko D., Yoo E. J. Angew. Chem., Int. Ed. 2015;54:13715–13718. - PubMed
    48. Wang H., Qiao H., Zhang H., Yang H., Zhao Y., Fu H. Eur. J. Org. Chem. 2015:4471–4480.
    49. Jiang Y., Tang X.-Y., Shi M. Chem. Commun. 2015;51:2122–2125. - PubMed
    50. Tian Y., Wang Y., Shang H., Xu X., Tang Y. Org. Biomol. Chem. 2015;13:612–619. - PubMed
    51. Zhang H., Wang H., Yang H., Fu H. Org. Biomol. Chem. 2015;13:6149–6153. - PubMed
    52. Xu H.-D., Xu K., Zhou H., Jia Z.-H., Wu H., Lu X.-L., Shen M.-H. Synthesis. 2015;47:641–646.
    53. Xu H.-D., Jia Z.-H., Xu K., Zhou H., Shen M.-H. Org. Lett. 2015;17:66–69. - PubMed
    54. Sun R., Jiang Y., Tang X.-Y., Shi M. Chem. – Eur. J. 2016;22:5727–5733. - PubMed

LinkOut - more resources