Redox-active nanomaterials for nanomedicine applications
- PMID: 28991962
- PMCID: PMC5648636
- DOI: 10.1039/c7nr05429g
Redox-active nanomaterials for nanomedicine applications
Abstract
Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.
Figures

Similar articles
-
Carbon nanomaterials: Biologically active fullerene derivatives.Srp Arh Celok Lek. 2016 Mar-Apr;144(3-4):222-31. Srp Arh Celok Lek. 2016. PMID: 27483572 Review.
-
Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders.Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):802-813. doi: 10.1016/j.bbagen.2017.01.018. Epub 2017 Jan 20. Biochim Biophys Acta Gen Subj. 2017. PMID: 28115205 Review.
-
Redox-active radical scavenging nanomaterials.Chem Soc Rev. 2010 Nov;39(11):4422-32. doi: 10.1039/b919677n. Epub 2010 Aug 17. Chem Soc Rev. 2010. PMID: 20717560 Review.
-
Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.Drug Metab Rev. 2014 May;46(2):232-46. doi: 10.3109/03602532.2014.883406. Epub 2014 Feb 10. Drug Metab Rev. 2014. PMID: 24506522 Review.
-
Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design.Biosensors (Basel). 2023 Jan 27;13(2):192. doi: 10.3390/bios13020192. Biosensors (Basel). 2023. PMID: 36831958 Free PMC article. Review.
Cited by
-
pH-Responsive Redox Nanoparticles Protect SH-SY5Y Cells at Lowered pH in a Cellular Model of Parkinson's Disease.Molecules. 2021 Jan 21;26(3):543. doi: 10.3390/molecules26030543. Molecules. 2021. PMID: 33494255 Free PMC article.
-
GdVO4:Eu3+ and LaVO4:Eu3+ Nanoparticles Exacerbate Oxidative Stress in L929 Cells: Potential Implications for Cancer Therapy.Int J Mol Sci. 2024 Oct 30;25(21):11687. doi: 10.3390/ijms252111687. Int J Mol Sci. 2024. PMID: 39519237 Free PMC article.
-
Ability of selenium species to inhibit metal-induced Aβ aggregation involved in the development of Alzheimer's disease.Anal Bioanal Chem. 2020 Sep;412(24):6485-6497. doi: 10.1007/s00216-020-02644-2. Epub 2020 Apr 22. Anal Bioanal Chem. 2020. PMID: 32322953
-
Magnetically responsive nanoplatform targeting circRNA circ_0058051 inhibits hepatocellular carcinoma progression.Drug Deliv Transl Res. 2023 Mar;13(3):782-794. doi: 10.1007/s13346-022-01237-z. Epub 2022 Sep 16. Drug Deliv Transl Res. 2023. PMID: 36114310 Free PMC article.
-
Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene.Materials (Basel). 2021 Oct 11;14(20):5978. doi: 10.3390/ma14205978. Materials (Basel). 2021. PMID: 34683568 Free PMC article. Review.
References
-
- Caruso F, Hyeon T, Rotello VM. Chemical Society Reviews. 2012;41:2537–2538. - PubMed
-
- Doane TL, Burda C. Chemical Society Reviews. 2012;41:2885–2911. - PubMed
-
- Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr C-M, Leong KW, Liang X-J, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung H-W, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang X-E, Zhao Y, Zhou X, Parak WJ. ACS Nano. 2017 doi: 10.1021/acsnano.6b06040. - DOI - PubMed
-
- Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Chem Soc Rev. 2010;39:4422–4432. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials