Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors
- PMID: 28992213
- PMCID: PMC5853822
- DOI: 10.1093/jxb/erx296
Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors
Abstract
Floral induction is an important event in the annual growth cycle of perennial fruit trees. For pear, this event directly affects fruit production in the following year. The flower buds in many species are induced by FLOWERING LOCUS T (FT), whose effect is repressed by the meristem-expressed gene TERMINAL FLOWER1 (TFL1). In this study, we investigated the functions of pear FT and TFL1 genes during floral development. Expression of pear FTs (PpFT1a and PpFT2a) in reproductive meristems was not obviously induced prior to floral initiation, while expression of TFL1s (PpTFL1-1a and PpTFL1-2a) rapidly decreased. The induction of the productive meristem identity MADS-box gene AP1 after repression of PpTFL1s suggested a primary role for PpTFL1 in floral induction. RNA-seq analysis suggested that plant hormone-related genes and several transcription factors that were coexpressed with PpTFL1 were potentially involved in the PpTFL1-mediated floral induction. Our data indicate the essential function of TFL1 in pear floral induction and add another species in the family Rosaceae in addition to strawberry and rose that shows a role for TFL1 in floral induction.
Keywords: Floral induction; TERMINAL FLOWER1; pear; plant hormone-related genes; signal transduction; transcription factor.
© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Figures
References
-
- Abe M, Kobayashi Y, Yamamoto S et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056. - PubMed
-
- Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP. 2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences, USA 104, 6484–6489. - PMC - PubMed
-
- Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
