Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec:193:1-8.
doi: 10.1016/j.aquatox.2017.09.029. Epub 2017 Oct 2.

Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa

Affiliations

Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa

Feijian Mao et al. Aquat Toxicol. 2017 Dec.

Abstract

Effects of benzophenone-3 (BP-3) on the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Microcystis aeruginosa, were investigated. The tested organisms were exposed to environmental levels of BP-3 for 10 days, at nominal concentrations from 0.01 to 5000μgL-1. Specific growth rate and photosynthetic pigments were employed to evaluate the toxic responses. The two tested algae had distinct toxic responses towards BP-3 stress, with the green alga C. reinhardtii being more sensitive than the cyanobacterium M. aeriginosa, based on EC20 and EC50 values. Uptake of BP-3 from the medium occurred in both species, with M. aeruginosa showing greater overall uptake (27.2-77.4%) compared to C. reinhardtii (1.1-58.4%). The effects of BP-3 on C. reinhardtii were variable at concentrations lower than 100μgL-1. At higher concentrations, the specific growth rate of C. reinhardtii decreased following a reduction in chlorophyll a (chl-a) content. Further experiments showed that BP-3 regulated the growth of C. reinhardtii by affecting the production of chl-a, chlorophyll b and carotenoids. In M. aeruginosa, specific growth rate was only moderately affected by BP-3. Additionally, the production of chl-a was significantly inhibited over the different exposure concentrations, while the production of carotenoids was stimulated. These results indicate a potential detrimental effect on prokaryotes and eukaryotes and that the mechanism of action varies with species.

Keywords: Benzophenone-3; Cyanobacteria; Green algae; Photosynthesis; Toxicity; Uptake.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources