Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb:119:142-149.
doi: 10.1016/j.bioelechem.2017.09.012. Epub 2017 Oct 2.

Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

Affiliations

Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

Yasemin D Yilmazel et al. Bioelectrochemistry. 2018 Feb.

Abstract

Few microorganisms have been examined for current generation under thermophilic (40-65°C) or hyperthermophilic temperatures (≥80°C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68±0.11A/m2 was attained in F. placidus MECs at 85°C, and 0.57±0.10A/m2 in G. ahangari MECs at 80°C, with an applied voltage of 0.7V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of -0.39V (vs. Ag/AgCl) for F. placidus and -0.37V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

Keywords: Ferroglobus placidus; Geoglobus ahangari; Hyperthermophilic MEC; Hyperthermophilic archaea.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources