A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum
- PMID: 28993326
- PMCID: PMC5700357
- DOI: 10.1128/AAC.00618-17
A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum
Abstract
Artemisinin resistance constitutes a major threat to the continued success of control programs for malaria, particularly in light of developing resistance to partner drugs. Improving our understanding of how artemisinin-based drugs act and how resistance manifests is essential for the optimization of dosing regimens and the development of strategies to prolong the life span of current first-line treatment options. Recent short-drug-pulse in vitro experiments have shown that the parasite killing rate depends not only on drug concentration but also the exposure time, challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in which the killing rate depends only on drug concentration. Here, we introduce a dynamic stress model of parasite killing and show through application to 3D7 laboratory strain viability data that the inclusion of a time-dependent parasite stress response dramatically improves the model's explanatory power compared to that of a traditional PK-PD model. Our model demonstrates that the previously reported hypersensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin compared to other parasite stages is due primarily to a faster development of stress rather than a higher maximum achievable killing rate. We also perform in vivo simulations using the dynamic stress model and demonstrate that the complex temporal features of artemisinin action observed in vitro have a significant impact on predictions for in vivo parasite clearance. Given the important role that PK-PD models play in the design of clinical trials for the evaluation of alternative drug dosing regimens, our novel model will contribute to the further development and improvement of antimalarial therapies.
Keywords: Plasmodium falciparum; artemisinin action; drug exposure time; dynamic model.
Copyright © 2017 Cao et al.
Figures






Similar articles
-
In Silico Investigation of the Decline in Clinical Efficacy of Artemisinin Combination Therapies Due to Increasing Artemisinin and Partner Drug Resistance.Antimicrob Agents Chemother. 2018 Nov 26;62(12):e01292-18. doi: 10.1128/AAC.01292-18. Print 2018 Dec. Antimicrob Agents Chemother. 2018. PMID: 30249691 Free PMC article.
-
Artemisinin Action and Resistance in Plasmodium falciparum.Trends Parasitol. 2016 Sep;32(9):682-696. doi: 10.1016/j.pt.2016.05.010. Epub 2016 Jun 9. Trends Parasitol. 2016. PMID: 27289273 Free PMC article. Review.
-
Split dosing of artemisinins does not improve antimalarial therapeutic efficacy.Sci Rep. 2017 Sep 21;7(1):12132. doi: 10.1038/s41598-017-12483-4. Sci Rep. 2017. PMID: 28935919 Free PMC article.
-
Intrahost modeling of artemisinin resistance in Plasmodium falciparum.Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):397-402. doi: 10.1073/pnas.1006113108. Epub 2010 Dec 20. Proc Natl Acad Sci U S A. 2011. PMID: 21173254 Free PMC article.
-
Modelling the time course of antimalarial parasite killing: a tour of animal and human models, translation and challenges.Br J Clin Pharmacol. 2015 Jan;79(1):97-107. doi: 10.1111/bcp.12288. Br J Clin Pharmacol. 2015. PMID: 24251882 Free PMC article. Review.
Cited by
-
Development and Validation of an In Silico Decision Tool To Guide Optimization of Intravenous Artesunate Dosing Regimens for Severe Falciparum Malaria Patients.Antimicrob Agents Chemother. 2021 May 18;65(6):e02346-20. doi: 10.1128/AAC.02346-20. Print 2021 May 18. Antimicrob Agents Chemother. 2021. PMID: 33685888 Free PMC article.
-
Artemisinin-resistant malaria.Clin Microbiol Rev. 2024 Dec 10;37(4):e0010924. doi: 10.1128/cmr.00109-24. Epub 2024 Oct 15. Clin Microbiol Rev. 2024. PMID: 39404268 Review.
-
An artesunate pharmacometric model to explain therapeutic responses in falciparum malaria.J Antimicrob Chemother. 2023 Sep 5;78(9):2192-2202. doi: 10.1093/jac/dkad219. J Antimicrob Chemother. 2023. PMID: 37473441 Free PMC article.
-
Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance.Antimicrob Agents Chemother. 2022 May 17;66(5):e0206521. doi: 10.1128/aac.02065-21. Epub 2022 Apr 13. Antimicrob Agents Chemother. 2022. PMID: 35416709 Free PMC article.
-
In Silico Investigation of the Decline in Clinical Efficacy of Artemisinin Combination Therapies Due to Increasing Artemisinin and Partner Drug Resistance.Antimicrob Agents Chemother. 2018 Nov 26;62(12):e01292-18. doi: 10.1128/AAC.01292-18. Print 2018 Dec. Antimicrob Agents Chemother. 2018. PMID: 30249691 Free PMC article.
References
-
- World Health Organization. 2015. World malaria report, 2015. World Health Organization, Geneva, Switzerland.
-
- Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467. doi:10.1056/NEJMoa0808859. - DOI - PMC - PubMed
-
- Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, ler Moo C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NP, White NJ, Anderson TJ, Nosten F. 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379:1960–1966. doi:10.1016/S0140-6736(12)60484-X. - DOI - PMC - PubMed
-
- Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Menard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Menard D. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55. doi:10.1038/nature12876. - DOI - PMC - PubMed
-
- Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ; Tracking Resistance to Artemisinin Collaboration (TRAC). 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423. doi:10.1056/NEJMoa1314981. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources