Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 1;73(Pt 10):814-821.
doi: 10.1107/S205979831701333X. Epub 2017 Sep 27.

Structure of the conserved Francisella virulence protein FvfA

Affiliations

Structure of the conserved Francisella virulence protein FvfA

Subramania Kolappan et al. Acta Crystallogr D Struct Biol. .

Abstract

Francisella tularensis is a potent human pathogen that invades and survives in macrophage and epithelial cells. Two identical proteins, FTT_0924 from F. tularensis subsp. tularensis and FTL_1286 from F. tularensis subsp. holarctica LVS, have previously been identified as playing a role in protection of the bacteria from osmotic shock and its survival in macrophages. FTT_0924 has been shown to localize to the inner membrane, with its C-terminus exposed to the periplasm. Here, crystal structures of the F. novicida homologue FTN_0802, which we call FvfA, in two crystal forms are reported at 1.8 Å resolution. FvfA differs from FTT_0924 and FTL_1286 by a single amino acid. FvfA has a DUF1471 fold that closely resembles the Escherichia coli outer membrane lipoprotein RscF, a component of a phosphorelay pathway involved in protecting bacteria from outer membrane perturbation. The structural and functional similarities and differences between these proteins and their implications for F. tularensis pathogenesis are discussed.

Keywords: DUF1471; Francisella novicida; Francisella tularensis; membrane proteins; periplasmic proteins; virulence factors.

PubMed Disclaimer

Similar articles

LinkOut - more resources