Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988;89(4):541-5.
doi: 10.1016/0300-9629(88)90830-4.

The effect of alkaline earth cations and of ionic strength on the dissociation of earthworm hemoglobin at alkaline pH

Affiliations

The effect of alkaline earth cations and of ionic strength on the dissociation of earthworm hemoglobin at alkaline pH

G Polidori et al. Comp Biochem Physiol A Comp Physiol. 1988.

Abstract

1. The effect of alkaline earth cations on the dissociation of the extracellular hemoglobin of Lumbricus terrestris and the effect of ionic strength on the dissociation of the hemoglobins of L. terrestris and Tubifex tubifex at concentrations of ca 2.5 mg/ml, over the pH range 9.0-10.5 was investigated using ultracentrifugation to separate the dissociated from the undissociated molecules. 2. Mg(II), Ca(II) and Sr(II) at concentrations of up to 0.2 M, decreased the dissociation of Lumbricus oxyhemoglobin from 70% at pH 9.0 and 100% at pH 9.5 and higher, to 20-30% at 0.05 M. The three cations were equally effective in decreasing the extent of dissociation of L. terrestris oxyhemoglobin over the pH range 9.0-10.5, with a K1/2 of ca 10 mM. 3. The dissociation of L. terrestris oxyhemoglobin over the pH range 9.0-10.5 was decreased only to 50-60% in the presence of up to 0.5 M NaCl or KCl; there was no further decrease in dissociation at concentrations of the two salts up to 1.5 M. 4. The dissociation of T. tubifex oxyhemoglobin over the pH range 9.0-10.0 was decreased from 100% to ca 40-50% in the presence of 0.5 M NaCl or KCl with little or no change at higher concentrations. At pH 10.5 and 11.0 the decrease in dissociation was more gradual, reaching ca 50% at 1.5 M NaCl.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources