Mutagenicity of amino acid and glutathione S-conjugates in the Ames test
- PMID: 2901035
- DOI: 10.1016/0165-1218(88)90144-9
Mutagenicity of amino acid and glutathione S-conjugates in the Ames test
Abstract
The mutagenicity of the glutathione S-conjugate S-(1,2-dichlorovinyl)glutathione (DCVG), the cysteine conjugates S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2-dichlorovinyl)-DL-alpha-methylcysteine (DCVMC), and the homocysteine conjugates S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine (DCVMHC) was investigated in Salmonella typhimurium strain TA2638 with the preincubation assay. DCVC was a strong, direct-acting mutagen; the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid decreased significantly the number of revertants induced by DCVC; rat renal mitochondria (11,000 X g pellet) and cytosol (105,000 X g supernatant) with high beta-lyase activity increased DCVC mutagenicity at high DCVC concentrations. DCVG was also mutagenic without the addition of mammalian activating enzymes; the presence of low gamma-glutamyltransferase activity in bacteria, the reduction of DCVG mutagenicity by aminooxyacetic acid, and the potentiation of DCVG mutagenicity by rat kidney mitochondria and microsomes (105,000 X g pellet) with high gamma-glutamyltransferase activity indicate that gamma-glutamyltransferase and beta-lyase participate in the metabolism of DCVG to mutagenic intermediates. The homocysteine conjugate DCVHC was only weakly mutagenic in the presence of rat renal cytosol, which exhibits considerable gamma-lyase activity, this mutagenic effect was also inhibited by aminooxyacetic acid. The conjugates DCVMC and DCVMHC, which are not metabolized to reactive intermediates, were not mutagenic at concentrations up to 1 mumole/plate. The results demonstrate that gamma-glutamyltransferase and beta-lyase are the key enzymes in the biotransformation of cysteine and glutathione conjugates to reactive intermediates that interact with DNA and thereby cause mutagenicity.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
