Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug 15;265(1):219-25.
doi: 10.1016/0003-9861(88)90387-6.

Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides

Affiliations

Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides

A R Rendina et al. Arch Biochem Biophys. .

Abstract

The selective grass herbicides diclofop, haloxyfop, and trifop were found to be potent reversible inhibitors of acetyl-CoA carboxylase from the susceptible species barley, corn, and wheat. Kis values with variable concentrations of acetyl-CoA ranged from 0.01 to 0.06 microM at pH 8.5 depending on the species of grass. Inhibition of the wheat enzyme by diclofop was noncompetitive versus acetyl-CoA with Kis less than Kii and noncompetitive versus MgATP and bicarbonate, but with Kis approximately equal to Kii. Since the apparent inhibition constant was most sensitive to the level of acetyl-CoA, these compounds probably interact with the transcarboxylase site rather than the biotin carboxylation site. With the wheat enzyme the Kis value for the R-(+)-enantiomer of trifop was 1.98 +/- 0.22 times lower than that of the racemic mixture. This confirms the stereoselectivity observed in the whole plant. The enzyme from tolerant broadleaf species (spinach and mung bean) was much less sensitive to these herbicides (Kis values varied from 16 to 515 microM). These data confirm that acetyl-CoA carboxylase is the site of action for the aryloxyphenoxypropionic acid herbicides and may explain their selectivity for monocotyledenous species.

PubMed Disclaimer

LinkOut - more resources