Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 22:8:690.
doi: 10.3389/fphys.2017.00690. eCollection 2017.

Upper-Body Muscular Endurance Training Improves Performance Following 50 min of Double Poling in Well-Trained Cross-Country Skiers

Affiliations

Upper-Body Muscular Endurance Training Improves Performance Following 50 min of Double Poling in Well-Trained Cross-Country Skiers

Jørgen Børve et al. Front Physiol. .

Abstract

This study investigated the effect of muscular endurance training on O2-cost and performance in double poling (DP) on a rollerski treadmill. Twenty-two well-trained cross-country skiers (31 ± 4 years, 77 ± 9 kg, 181 ± 8 cm, VO2max running: 64 ± 5 mL·kg-1·min-1) were counter-balanced to either a combined muscular endurance and running interval training group [MET; n = 11 (♂ = 9, ♀ = 2)], or an endurance running interval training group [ET; n = 11 (♂ = 9, ♀ = 2)]. Both groups continued their normal low-and moderate intensity training, but replaced 2 weekly high intensity-training sessions with two project-specific sessions for 6 weeks. In these sessions, MET combined upper-body muscular endurance training (4 × 30 repetitions, 90 s rest between sets) and running intervals (3 × 4 or 2 × 6 min, 3 min rest), while ET performed running intervals only (6 × 4 or 4 × 6 min, 3 min rest). The DP test-protocol consisted of 50 min submaximal poling for O2-cost measurement, followed by a self-paced 1,000-m performance test. In addition, subjects performed a VO2max test in running. MET increased muscular endurance (P < 0.05) and 1RM in simulated DP (P < 0.01) more than ET. Further, MET reduced the 1,000-m time and O2-cost compared to baseline values (P < 0.05), and tended to improve the 1,000-m time more than ET (P = 0.06). There were no changes in VO2max running or VO2peak DP in either MET or ET. In conclusion, 6 weeks of muscular endurance training increased both muscular endurance and 1RM in simulated DP. Further, specific upper-body muscular endurance training improved DP performance and thus, seems as a promising training model to optimize performance in well-trained cross-country skiers.

Keywords: O2-cost; cross-country skiing; high-intensity training; maximal oxygen uptake; running; training intensity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The standing double poling exercise used during testing and training. The figure illustrate the poling phase of the cycle. The participant gave his consent to publish the picture.
Figure 2
Figure 2
Schematic illustration of prolonged double poling protocol. Steady-state VO2 was measured from 5 to 20, 31 to 35, and 46 to 50 min followed by a self-paced 1,000-m maximal test. ↓ = start O2 measurements. ↑ = end O2measurements. All tests conducted at 2.5° incline and the speed shown is the average from both groups. Speed from 0 to 5 min was identical to 5 to 10 min.
Figure 3
Figure 3
Muscular endurance (A) and 1RM (B) in the standing double poling exercise before (pre) and after (post) 6 weeks of combined endurance- and muscular endurance training (MET) or endurance training (ET). Data are expressed as group mean ± standard deviation. *Significant change from pre- to post-test (P < 0.05). **Significant differences from pre- to post-test between MET and ET (P < 0.05).
Figure 4
Figure 4
1,000-m time before (pre) and after (post) 6 weeks of combined endurance training and muscular endurance training (MET) and endurance training (ET). Data are expressed as group mean ± standard deviation. *Tendency to change from pre- to post-test (P = 0.06).
Figure 5
Figure 5
Relative change in speed during the 1,000-m time trial from pre- (black horizontal line at 0%) to post-test. Data are expressed as group mean ± standard deviation. The speed was set the first 200 m. All tests conducted at 2.5° incline. *Significant differences from pre- to post-test between combined endurance training and muscular endurance training (MET) and endurance training (ET) (P < 0.05).
Figure 6
Figure 6
O2-cost; VO2 (A,B), respiratory exchange ratio, RER (C,D) and heart rate, HR (E,F) during the prolonged 50-min double poling protocol before (pre-test) and after (post-test) the 6-week intervention period. MET, Combined endurance training and muscular endurance training (left), ET, endurance training (right). Data are expressed as group mean ± standard deviation. *Different from pre-test (P < 0.05).
Figure 7
Figure 7
Percent individual changes from pre- to post-test: (A) 1,000-m time, (B) muscular endurance, (C) VO2peak double poling (mL·kg1·min1) and (D) average O2-cost from the following measuring intervals: 8 to 10, 13 to 15, 18 to 20, 33 to 35, and 48 to 50 min. MET, Combined endurance training and muscular endurance training (gray columns); ET, endurance training (black columns).

References

    1. Bassett D. R., Howley E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32, 70–84. 10.1097/00005768-200001000-00012 - DOI - PubMed
    1. Borg G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14, 377–381. 10.1249/00005768-198205000-00012 - DOI - PubMed
    1. Bosquet L., Montpetit J., Arvisais D., Mujika I. (2007). Effects of tapering on performance: a meta-analysis. Med. Sci. Sports Exerc. 39, 1358–1365. 10.1249/mss.0b013e31806010e0 - DOI - PubMed
    1. Campos G. E., Luecke T. J., Wendeln H. K., Toma K., Hagerman F. C., Murray T. F., et al. . (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 88, 50–60. 10.1007/s00421-002-0681-6 - DOI - PubMed
    1. Ebben W. P., Kindler A. G., Chirdon K. A., Jenkins N. C., Polichnowski A. J., Ng A. V. (2004). The effect of high-load vs. high-repetition training on endurance performance. J. Strength Cond. Res. 18, 513–517. 10.1519/R-12722.1 - DOI - PubMed

LinkOut - more resources